|
Record |
Links |
|
Author |
Van Dijck, J.G.; Mampuys, P.; Ching, H.Y.V.; Krishnan, D.; Baert, K.; Hauffman, T.; Verbeeck, J.; Van Doorslaer, S.; Maes, B.U.W.; Dorbec, M.; Buekenhoudt, A.; Meynen, V. |
|
|
Title |
Synthesis – properties correlation and the unexpected role of the titania support on the Grignard surface modification |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Applied Surface Science |
Abbreviated Journal |
Appl Surf Sci |
|
|
Volume |
527 |
Issue |
|
Pages |
146851-17 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
While the impact of reaction conditions on surface modification with Grignard reactants has been studied for silica supports, such information is absent for metal oxides like titania. Differences between modified titania and silica are observed, making it paramount to explore the reaction mechanism. A detailed study on the impact of the reaction conditions is reported, with a focus on the chain length of the alkyl Grignard reactant, its concentration, the reaction time and temperature, and the type of titania support. While the increase in the chain length reduces the amount of organic groups on the surface, the concentration, time and temperature show little/no influence on the modification degree. However, the type of titania support used and the percentage of amorphous phase present has a significant impact on the amount of grafted groups. Even though the temperature and concentration show no clear impact on the modification degree, they can cause changes in the surface hydroxyl population, which are thus not linked to the modification degree. Furthermore, the titania support is reduced during functionalization. This reduction dependents on the reaction temperature, the titania support and the chain length of the Grignard reactant. Similarly, this reduction is not linked to the modification degree. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000564205300003 |
Publication Date |
2020-06-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0169-4332 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.7 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
; The FWO (Fonds Wetenschappelijk Onderzoek) is gratefully acknowledged for the VITO-FWO grant of fellow Jeroen G. Van Dijck (11W9416N) and the financial support granted in project GO12712N. The E.U. is acknowledged for H.Y. Vincent Ching's H2020-MSCA-IF (grant number 792946, iSPY). Dileep Krishnan and Johan Verbeeck acknowledge funding from GOA project “solarpaint” of the University of Antwerp. ; |
Approved |
Most recent IF: 6.7; 2020 IF: 3.387 |
|
|
Call Number |
UA @ admin @ c:irua:169722 |
Serial |
6712 |
|
Permanent link to this record |