toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Galván Moya, J.E.; Peeters, F.M. url  doi
openurl 
  Title Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages 134106,1-134106,10  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a mean-field description of the zigzag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential r−ne−r/λ, that are confined by a power-law potential (yα). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α and n. Close to the transition point for the zigzag phase transition, the scaling behavior of the order parameter is determined. For α=2, the zigzag transition from a single to a double chain is of second order, while for α>2, the one-chain configuration is always unstable and, for α<2, the one-chain ordered state becomes unstable at a certain critical density, resulting in jumps of single particles out of the chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296289500004 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93583 Serial 1345  
Permanent link to this record
 

 
Author Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M. pdf  doi
openurl 
  Title Graphane Type A1 Journal article
  Year 2015 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci  
  Volume 5 Issue 5 Pages 255-272  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomically thin crystals have recently been the focus of attention, in particular, after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class, the chemically derived graphenes have attracted tremendous interest. It was shown that, although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been reported such as hydrogenated graphene graphane' (CH), fluorographene (CF), and chlorographene (CCl). Moreover, the stability of bromine and iodine covered graphene were predicted using computational tools. Among these derivatives, easy synthesis, insulating electronic behavior and reversibly tunable crystal structure of graphane make this material special for future ultra-thin device applications. This overview surveys structural, electronic, magnetic, vibrational, and mechanical properties of graphane. We also present a detailed overview of research efforts devoted to the computational modeling of graphane and its derivatives. Furthermore recent progress in synthesis techniques and possible applications of graphane are reviewed as well. WIREs Comput Mol Sci 2015, 5:255-272. doi: 10.1002/wcms.1216 For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352862700001 Publication Date 2015-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-0876; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 14.016 Times cited 54 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. H. Sahin is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 14.016; 2015 IF: 11.885  
  Call Number c:irua:125996 Serial 1366  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene: a perfect nanoballoon Type A1 Journal article
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 93 Issue 19 Pages 193107,1-193107,3  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000260944100090 Publication Date 2008-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 295 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Approved Most recent IF: 3.411; 2008 IF: 3.726  
  Call Number UA @ lucian @ c:irua:73196 Serial 1368  
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Graphene-based resonant-tunneling structures Type A1 Journal article
  Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 90 Issue 13 Pages 132122,1-3  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000245317100056 Publication Date 2007-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 147 Open Access  
  Notes Approved Most recent IF: 3.411; 2007 IF: 3.596  
  Call Number UA @ lucian @ c:irua:64303 Serial 1370  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 19 Pages 193701-193708  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319295200022 Publication Date 2013-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:108999 Serial 1371  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene in inhomogeneous magnetic fields : bound, quasi-bound and scattering states Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 31 Pages 315301,1-315301,14  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000293008900002 Publication Date 2011-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 38 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE, the Canadian NSERC grant no. OGP0121756 and the Belgian Science Policy (IAP). We acknowledge discussions and correspondence with Professor A Matulis. ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:91176 Serial 1372  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Graphene nanoribbons subjected to axial stress Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 8 Pages 085432-085432,6  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281065100007 Publication Date 2010-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 92 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84583 Serial 1373  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Graphene on boron-nitride : Moiré pattern in the van der Waals energy Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 4 Pages 041909-4  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moire pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331209900028 Publication Date 2014-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 61 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A was supported by the EU-Marie Curie IIF postdoctoral Fellowship/299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:115802 Serial 1374  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Graphene on hexagonal lattice substrate : stress and pseudo-magnetic field Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 17 Pages 173106  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Moire patterns in the pseudo-magnetic field and in the strain profile of graphene (GE) when put on top of a hexagonal lattice substrate are predicted from elasticity theory. The van der Waals interaction between GE and the substrate induces out-of-plane deformations in graphene which results in a strain field, and consequently in a pseudo-magnetic field. When the misorientation angle is about 0.5 degrees, a three-fold symmetric strain field is realized that results in a pseudo-magnetic field very similar to the one proposed by F. Guinea, M. I. Katsnelson, and A. K. Geim [Nature Phys. 6, 30 (2010)]. Our results show that the periodicity and length of the pseudo-magnetic field can be tuned in GE by changing the misorientation angle and substrate adhesion parameters and a considerable energy gap (23 meV) can be obtained due to out-of-plane deformation of graphene which is in the range of recent experimental measurements (20-30 meV). (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000336142500066 Publication Date 2014-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:117724 Serial 1375  
Permanent link to this record
 

 
Author Pizzochero, M.; Leenaerts, O.; Partoens, B.; Martinazzo, R.; Peeters, F.M. pdf  url
doi  openurl
  Title Hydrogen adsorption on nitrogen and boron doped graphene Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue 27 Pages 425502  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000362573500008 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 20 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl). MP gratefully acknowledges the Condensed Matter Theory group at Universiteit Antwerpen for the hospitality during his stay. Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:128759 Serial 3971  
Permanent link to this record
 

 
Author Costa Filho, R.N.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Graphene ribbons with a line of impurities: oOpening of a gap Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue Pages 193409,1-4  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000251326800034 Publication Date 2007-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69661 Serial 1376  
Permanent link to this record
 

 
Author Schoelz, J.K.; Xu, P.; Meunier, V.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M. url  doi
openurl 
  Title Graphene ripples as a realization of a two-dimensional Ising model : a scanning tunneling microscope study Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 045413  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ripples in pristine freestanding graphene naturally orient themselves in an array that is alternately curved-up and curved-down; maintaining an average height of zero. Using scanning tunneling microscopy (STM) to apply a local force, the graphene sheet will reversibly rise and fall in height until the height reaches 60%-70% of its maximum at which point a sudden, permanent jump occurs. We successfully model the ripples as a spin-half Ising magnetic system, where the height of the graphene plays the role of the spin. The permanent jump in height, controlled by the tunneling current, is found to be equivalent to an antiferromagnetic-to-ferromagnetic phase transition. The thermal load underneath the STM tip alters the local tension and is identified as the responsible mechanism for the phase transition. Four universal critical exponents are measured from our STM data, and the model provides insight into the statistical role of graphene's unusual negative thermal expansion coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000348762200011 Publication Date 2015-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported in part by Office of Naval Research (USA) under Grant No. N00014-10-1-0181 and National Science Foundation (USA) under Grant No. DMR-0855358. F. M. Peeters and M. Neek-Amal were supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123866 Serial 1377  
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Green function approach to superconductivity in nanowires Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 14 Pages 144504-144504,7  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity in nanowires made of weak coupling superconductor materials is investigated using a Green function approach. We show that these are multigap systems in which the ratio Delta(T)/k(B)T(c) is to a large extent similar to what is observed in some high-T-c two-gap systems, such as MgB2 and some of the Fe-based superconductors. On the other hand, because of confinement, the superfluid density has a temperature behavior of the form n(s)(T) = 1 – (T/T-c)(3) near T-c, thus deviating from the BCS behavior for bulk superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302290700006 Publication Date 2012-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; This work was supported by FWO-Vl and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97764 Serial 1381  
Permanent link to this record
 

 
Author Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Ground state and normal-mode spectra of a two-dimensional system of dipole particles confined in a parabolic trap Type A1 Journal article
  Year 2008 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 78 Issue 3 Part 1 Pages 031405-31412  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ordered configurations of a monolayer of interacting magnetic dipoles confined in a circular parabolic potential are investigated as a function of the dipole moment of the particles. Despite the circular confinement, we find very asymmetric ordered structures like chains and Y-shaped configurations when a magnetic field is applied parallel to the plane of the particles. The normal-mode spectrum of the particles and its dependence on the magnetic field and the strength of the dipole moment of the particles are studied. The vibrational and rotational modes of the spectrum, which are associated with the stability of the system, are investigated in detail. The number of particles is varied and we found different ordering of the particles for different values of the dipole moment and the magnetic field. A ring structure with a large number of particles is observed for high values of the dipole moment of the particles.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000259682700057 Publication Date 2008-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.366; 2008 IF: 2.508  
  Call Number UA @ lucian @ c:irua:103084 Serial 1382  
Permanent link to this record
 

 
Author Tavernier, M.B.; Anisimovas, E.; Peeters, F.M. url  doi
openurl 
  Title Ground state and vortex structure of the N=5 and N=6 electron quantum dot Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 12 Pages 125305,1-9  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000240872500054 Publication Date 2006-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:61000 Serial 1383  
Permanent link to this record
 

 
Author Tomecka, D.M.; Kamieniarz, G.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Ground state configurations and melting of two-dimensional non-uniformly charged classical clusters Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 15 Pages 155301,1-155301,7  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider classical two-dimensional (2D) Coulomb clusters consisting of two species containing five particles with charge q1 and five with charge q2, respectively. Using Monte Carlo and molecular dynamics (MD) simulations, we investigated the ground state configurations as well as radial and angular displacements of particles as a function of temperature and their dependence on the ratio q = q2/q1. We found new configurations and a new multi-step melting behavior for q sufficiently different from the uniform charge limit q = 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000264708600007 Publication Date 2009-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:76412 Serial 1384  
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Ground state configurations of vertically coupled quantum rings Type A1 Journal article
  Year 2007 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 4 Issue 2 Pages 560-562  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000245877200097 Publication Date 2007-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1610-1634;1610-1642; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:69665 Serial 1386  
Permanent link to this record
 

 
Author Gonzalez, A.; Partoens, B.; Matulis, A.; Peeters, F.M. doi  openurl
  Title Ground-state energy of confined bosons in two dimensions Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 1653-1656  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000078291000027 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24159 Serial 1387  
Permanent link to this record
 

 
Author Kuopanportti, P.; Orlova, N.V.; Milošević, M.V. url  doi
openurl 
  Title Ground-state multiquantum vortices in rotating two-species superfluids Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 91 Issue 91 Pages 043605  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show numerically that a rotating, harmonically trapped mixture of two Bose-Einstein-condensed superfluids cancontrary to its single-species counterpartcontain a multiply quantized vortex in the ground state of the system. This giant vortex can occur without any accompanying single-quantum vortices, may either be coreless or have an empty core, and can be realized in a Rb87−K41 Bose-Einstein condensate. Our results not only provide a rare example of a stable, solitary multiquantum vortex but also reveal exotic physics stemming from the coexistence of multiple, compositionally distinct condensates in one system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000352255200005 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 25 Open Access  
  Notes ; This work was supported by the Finnish Cultural Foundation, the Research Foundation – Flanders (FWO), and the Magnus Ehrnrooth Foundation. We thank E. Ruokokoski and T. P. Simula for valuable comments and discussions. ; Approved Most recent IF: 2.925; 2015 IF: 2.808  
  Call Number c:irua:124906 Serial 1388  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. pdf  doi
openurl 
  Title Ground state of excitons and charged excitons in a quantum well Type A1 Journal article
  Year 2000 Publication Physica status solidi: A: applied research T2 – 6th International Conference on Optics of Excitons in Confined Systems, (OECS-6), AUG 30-SEP 02, 1999, ASCONA, SWITZERLAND Abbreviated Journal Phys Status Solidi A  
  Volume 178 Issue 1 Pages 513-517  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A variational calculation of the ground state of a neutral exciton and of positively and negatively charged excitons (trions) in a single quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. Our results are compared with previous theoretical results and with available experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000086440500089 Publication Date 2002-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 16 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103467 Serial 1389  
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M. pdf  doi
openurl 
  Title The guidance of vortex-antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film Type A1 Journal article
  Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 24 Issue 2 Pages 024014-024014,8  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The possibility of manipulating vortex matter by using various artificial pinning arrays is of significant importance for possible applications in nano and micro fluxonics devices. By numerically solving the time-dependent GinzburgLandau equations, we study the vortexantivortex (vav) dynamics in a hybrid structure consisting of a finite-size superconductor with magnetic dipoles on top which generate vav pairs in the presence of an external current. The vav dynamics is analyzed for different arrangements and magnetic moments of the dipoles, as a function of angle α between the direction of the magnetic dipole and that of the Lorentz force produced by the applied current. The interplay of the attractive interaction between a vav pair and the Lorentz force leads either to the separation of (anti)vortices and their motion in opposite directions or to their annihilation. We found a critical angle αc, below which vortices and antivortices are repelled, while for larger angles they annihilate. In case of a single (few) magnetic dipole(s), this magnetic dipole induced vav guidance is influenced by the self-interaction of the vav pairs with their images in a finite-size sample, while for a periodic array of dipoles the guidance is determined by the interaction of a vav pair with other dipoles and vav pairs created by them. This effect is tunable through the external current and the magnetization and size of the magnetic dipoles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000286379900015 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 28 Open Access  
  Notes ; This work was supported by the 'Odysseus' program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl. DYV acknowledges support from the Russian Fund for Basic Research and Russian Agency of Education under the Federal Programme 'Scientific and educational personnel of innovative Russia in 2009-2013'. ; Approved Most recent IF: 2.878; 2011 IF: 2.662  
  Call Number UA @ lucian @ c:irua:88732 Serial 1399  
Permanent link to this record
 

 
Author Milošević, M.V.; Gillijns, W.; Silhanek, A.V.; Libál, A.; Peeters, F.M.; Moshchalkov, V.V. doi  openurl
  Title Guided nucleation of superconductivity on a graded magnetic substrate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 3 Pages 032503,1-032503,3  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate the controlled spatial nucleation of superconductivity in a thin film deposited on periodic arrays of ferromagnetic dots with gradually increasing diameter. The perpendicular magnetization of the dots induces vortex-antivortex molecules in the sample, with the number of (anti)vortices increasing with magnet size. The resulting gradient of antivortex density between the dots predetermines local nucleation of superconductivity in the sample as a function of the applied external field and temperature. In addition, the compensation between the applied magnetic field and the antivortices results in an unprecedented enhancement of the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000273890500034 Publication Date 2010-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-NES program. W. G., A. V. S., and A. L. acknowledge individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:81504 Serial 1400  
Permanent link to this record
 

 
Author Li, X.Q.; Peeters, F.M.; Geim, A.K. openurl 
  Title The Hall effect of an inhomogeneous magnetic field in mesoscopic structures Type A1 Journal article
  Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 9 Issue Pages 8065-8073  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1997XY64300012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.649; 1997 IF: 1.479  
  Call Number UA @ lucian @ c:irua:19290 Serial 1401  
Permanent link to this record
 

 
Author Valkering, A.M.C.; Sommerfeld, P.K.H.; van de Ven, R.A.M.; van der Heijden, R.W.; Blom, F.A.P.; Lea, M.J.; Peeters, F.M. url  doi
openurl 
  Title Hall magnetocapitance in two-dimensional electron systems Type A1 Journal article
  Year 1998 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 81 Issue Pages 5398-5401  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000077511700036 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 4 Open Access  
  Notes Approved Most recent IF: 8.462; 1998 IF: 6.017  
  Call Number UA @ lucian @ c:irua:24153 Serial 1402  
Permanent link to this record
 

 
Author Peeters, F.M.; Li, X.Q. doi  openurl
  Title Hall magnetometer in the ballistic regime Type A1 Journal article
  Year 1998 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 72 Issue Pages 572-574  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000071704700021 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 119 Open Access  
  Notes Approved Most recent IF: 3.411; 1998 IF: 3.349  
  Call Number UA @ lucian @ c:irua:24172 Serial 1403  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M. doi  openurl
  Title Hall potentiometer in the ballistic regime Type A1 Journal article
  Year 1999 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 74 Issue Pages 1600-1602  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000079078200032 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.411; 1999 IF: 4.184  
  Call Number UA @ lucian @ c:irua:24170 Serial 1404  
Permanent link to this record
 

 
Author Hai, G.-Q.; Peeters, F.M. pdf  doi
openurl 
  Title Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 20  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000347776800005 Publication Date 2015-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 2 Open Access  
  Notes ; This work was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number c:irua:125317 Serial 1406  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 22 Pages 224523-224523,6  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292218200010 Publication Date 2011-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90924 Serial 1415  
Permanent link to this record
 

 
Author Shakouri, K.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Helical liquid of snake states Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 19 Pages 195404-195405  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We derive an exact solution to the problem of spin snake states induced in a nonhomogeneous magnetic field by a combined action of the Rashba spin-orbit and Zeeman fields. The electron spin behavior as a function of the cyclotron orbit center position and an external homogeneous magnetic field was obtained. It is shown that in an antisymmetric magnetic field the electron spin in the snake states has only an in-plane projection, perpendicular to the magnetic interface, which vanishes at large positive momenta. Applying an external homogeneous magnetic field adds a finite out-of-plane spin component and simultaneously gaps out the spectral branches, which results in regular beating patterns of the spin current components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326820200007 Publication Date 2013-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112712 Serial 1416  
Permanent link to this record
 

 
Author Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Hexagonal A1N : dimensional-crossover-driven band-gap transition Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 085430  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013)], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm(-1) and an E-g mode at 703 cm(-1), which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA'-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N = 1 – 9, we predict that thicker structures (N >= 10) have a direct band gap at the Gamma point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350319200020 Publication Date 2015-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 99 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B. and R.T.S. acknowledge the support from TUBITAK Project No 114F397. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125416 Serial 1421  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: