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Green function approach to superconductivity in nanowires
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Superconductivity in nanowires made of weak coupling superconductor materials is investigated using a
Green function approach. We show that these are multigap systems in which the ratio �(T )/kBTc is to a large
extent similar to what is observed in some high-Tc two-gap systems, such as MgB2 and some of the Fe-based
superconductors. On the other hand, because of confinement, the superfluid density has a temperature behavior
of the form ns(T ) = 1 − (T/Tc)3 near Tc, thus deviating from the BCS behavior for bulk superconductors.
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I. INTRODUCTION

Interest in the effects of quantum confinement on supercon-
ductivity developed long before the advent of nanoscience.1–4

Advances in materials synthesis and nanolithography tech-
nology, however, makes it now possible to fabricate in
a reproducible way high quality nanoscale samples, in
which confinement effects can be examined in more detail.
Nanowires have attracted particular interest in the past several
years, leading to experimental studies in systems fabricated
with a range of materials and methods. See Refs. 5–12 for
a few examples. Among the most intriguing findings, we
mention that in Al nanowires the superconducting critical
temperature Tc was found to increase with decreasing radius
of the nanowire, reaching values more than 50% higher than
in the bulk.10,13 In the case of Sn nanowires, Tc appears to be
less sensitive to the radius, but its value was reported to be
higher than in the bulk in at least one sample.7 In the case
of Pb nanowires, an enhancement of Tc was also observed in
crystalline samples, but not in polycrystalline ones.5 In NbSe2

nanowires, the critical field Hc was found to be 2–6 times
larger than in the bulk, depending on the orientation of the
field.8 Interestingly, an enhancement of Hc over its bulk value
was already reported in a study of Sn “whiskers” in 1957.1,14

On the theory side, work has been somewhat more sparse.
See Ref. 15 for a recent review. For inhomogeneous supercon-
ductors, a powerful approach is given by the self-consistent
field method of Bogoliubov and de Gennes (BdG).16 As
discussed in previous works using this method, because of
the quality of the nanowires in experiment, the effects of
disorder are sufficiently low that the theoretical studies can
be done in the clean limit.13,15,17 These works have led to
several findings, greatly advancing our understanding of the
effects of confinement on superconductivity. For instance, the
spatial variation of the order parameter due to confinement was
found to be much stronger than predicted by Ginzburg-Landau
theory, and gapless superconductivity was predicted above a
certain applied field.17 A most interesting finding is that the
so-called shape resonances as a function of confining length,
first discussed by Blatt and Thompson in 1963 in their study of
superconductivity in thin films,2,3 also occur in nanowires.18

In fact, the enhancement of Tc depending on nanowire radius
observed in experiment has been interpreted as due to these
shape resonances.13 The effect of the latter in nanowires is
found to be more dramatic than in nanofilms. Indeed, the

predicted enhacement of Tc or of the superconducting gap
over their bulk values can be astounding.15,18 The reported
effect on the coherence length is equally remarkable. Near
resonance lengths of just a few nanometers are obtained, values
more typical of strongly correlated superconductors such as the
cuprates.19

In this work we use the Green functions formulation
of the Bardeen, Cooper, and Schrieffer (BCS) theory of
superconductivity,20 first introduced by Gor’kov for homo-
geneous, bulk systems.21 The approach we follow has not
been applied to nanowires previously, and we show here that
it is indeed a very good alternative to the BdG method. It
has the additional advantage that it lends itself to analytical
work, so that most of the results can be written in closed
form. This allows us to shed new light on the properties of
superconductivity in nanowires with comparative ease. As in
previous work,13,15,17 our study is done in the clean limit.
Superconductivity in nanowires is quite extraordinary. First,
because of confinement, superconductivity becomes multigap,
although the bulk material may be a simple, single-gap
superconductor such as Al. Then, as we show here, the
�(T )/kBTc ratios, at T = 0 K as well as for T → Tc, deviate
from conventional BCS theory in a way that parallels what
occurs in some conventional and unconventional two-gap
systems with a high Tc, such as MgB2 and LiFeAs. As one
may expect, their position in a Inosov plot22 classifies them
as weak coupling superconductors, even for Tc values that
rival those of the cuprate superconductors. On the other, the
superfluid density in these systems is a very small fraction
of the total electron density, even at T = 0. Furthermore, due
to confinement, for temperatures close to Tc its behavior as
a function of temperature is different from the BCS behavior
for bulk superconductors. Indeed, it shows a behavior that
is nearly cubic in T/Tc, falling between the BCS local and
nonlocal results.20

In Sec. II we derive the mean-field solution to an effective
superconducting Hamiltonian, with no particular assumption
regarding the geometry of the system and only assuming an
orthonormal independent quasiparticle basis. The purpose is
to have a formulation general enough, but also explicit enough,
that it can be readily applied to confined superconductors
of almost any geometry, such as nanofilms, nanocylinders,
nanoshells, etc. In Sec. III we present our results for nanowires.
Section IV concludes with a discussion.
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II. FORMALISM

We consider a system of quasiparticles in which an effective
interaction veff couples those of opposite spin only. This is the
net effect of phonon exchange and of the screened Coulomb
interaction (for which an explicit form is not required at this
point). The Hamiltonian of the system is

Ĥ =
∑

σ

∫
d3rψ̂†

σ (r) [H0(r) − μ] ψ(r)

+ 1

2

∫
d3r d3r ′ψ̂†

↑(r)ψ̂†
↓(r′)veff(r,r′)ψ̂↓(r′)ψ̂↑(r), (1)

where H0 is the Hamiltonian of the uncoupled quasiparticles
and μ is the chemical potential. We seek to determine the
system’s single-particle temperature Green function, defined
by G(rr′,τ ) = −〈Tτ ψ̂

†
↑(rτ )ψ̂↑(r′0)〉 (we take here spin-↑ for

definiteness). To solve the equation of motion for G we intro-
duce the Gorkov functions F(rr′,τ ) = −〈Tτ ψ̂↑(rτ )ψ̂↓(r′0)〉
and F†(rr′,τ ) = −〈Tτ ψ̂

†
↓(rτ )ψ̂↑(r′0)〉, and take the mean-

field approximation20

〈Tτ ψ̂
†
↓(r1τ1)ψ̂↓(r2τ2)ψ̂↑(r3τ3)ψ̂†

↑(r4τ4)〉
� −F(r3r2,τ3 − τ2)F†(r1r4,τ1 − τ4). (2)

The resulting coupled equations for G and F† read, in
frequency domain,

Lp(r)G̃(rr′,ωp) −
∫

d3r ′′�(rr′′)F̃†(r′′r′,ωp) = h̄δ(r − r′),

Lp(r)F̃†(rr′,ωp) −
∫

d3r ′′�(rr′′)G̃(r′′r′,ωp) = 0. (3)

Here Lp(r) = ih̄ωp − H0(r) + μ, with ωp a fermionic fre-
quency, ˜ denoting a τ -Fourier transformed function, and
we have introduced �(rr′′) ≡ veff(r,r′′)F(rr′′,0), that is, a
nonlocal pairing potential,23 also called pairing field in nuclear
physics.24 As we will see further down, it is the pairing
potential that gives rise to the superconducting energy gap.

Let us now assume that the external potential in H0 is
spin independent and that the boundary conditions are such
that the eigenstates of H0 form an orthonormal set, that is,
the quasiparticle states are given by H0|ν〉 = Eν |ν〉, with
〈ν|ν ′〉 = δν,ν ′ . Hence, the field operators have the expansions
ψ̂σ (rτ ) = ∑

ν ψν(r)cνσ (τ ) and ψ̂†
σ (rτ ) = ∑

ν ψ∗
ν (r)c†νσ (τ ).

Projecting Eqs. (3) onto this basis, so that, for example,
G̃(rr′,ωp) = ∑

νν ′ ψν(r)ψ∗
ν ′(r′)G̃(νν ′,ωp), and F̃†(rr′,ωp) =∑

νν ′ ψ∗
ν (r)ψ∗

ν ′ (r′)F̃†(νν ′,ωp), yields

[ih̄ωp − εν]G̃(νν ′,ωp) +
∑

μ

�(νμ)F̃†(μν ′,ωp) = h̄δνν ′ ,

(4)
[ih̄ωp + εν]F̃†(νν ′,ωp) +

∑
μ

�∗(νμ)G̃(μν ′,ωp) = 0.

In the above we refer the energies with respect to the
chemical potential and introduced εν = Eν − μ and the gap
matrix �(νν ′) = ∑

μμ′ Vνν ′,μμ′F(μμ′,0), where Vνν ′,μμ′ ≡=
−〈νν ′|veff|μμ′〉.25 We have then a block-matrix equation(

E D
D∗ −E∗

)(
G̃
F̃ †

)
=

(
I
O

)
. (5)

Here matrix D is defined by D(νν ′) = �(νν ′)/h̄ and E(νν ′) =
δνν ′ (iωp − εν/h̄), while I and O are the identity and zero
matrices, respectively. Thus, quite generally, G̃ and F̃† are
given in closed form by

G̃ = [E + D(E∗)−1D∗]−1,
(6)

F̃† = (E∗)−1D∗[E + D(E∗)−1D∗]−1.

Note that up to now few assumptions were made as to the form
or sign of the effective interaction, or of the geometry of the
system. The task from here on is to determine the gap matrix
that satisfies the above implicit system.

We now assume that the effective interaction couples
only time-reversed states,26 and that it is attractive. For
notational simplicity, in the following the time-reversed state
corresponding to ψν is written ψ−ν . The effective interaction
matrix elements introduced above become

Vνν ′,μμ′ = Vν −ν,μ −μδ−ν ν ′δ−μ μ′ ≡ Vνμδ−ν ν ′δ−μ μ′ , (7)

and the gap matrix becomes �(νν ′) = δ−νν ′
∑

μ Vνμ

F(−μμ,0) ≡ �(ν)δ−νν ′ . It is straightforward to deduce from
Eqs. (6) that the Green and Gorkov functions are then given
by

G̃(νν ′,ωp) = −δνν ′
iωp + εν/h̄

ω2
p + ξ 2

ν /h̄2 ,

(8)

F̃†(νν ′,ωp) = δ−νν ′
�∗(ν)/h̄

ω2
p + ξ 2

ν /h̄2 ,

with ξ 2
ν = ε2

ν + |�(ν)|2. Thus, the coefficients of the ex-
pansion of the pairing potential over the quasiparticle basis
are indeed the superconducting energy gap values. Noting
that F(−μμ,0) = ∑

p F̃(−μμ,ωp)/βh̄, and with the above
solution for the Gorkov function, the expression for �(ν)
finally becomes

�(ν) =
∑
ν ′

Vνν ′�(ν ′)
1

2ξν ′
tanh

ξν ′

2kBT
. (9)

This equation determines both the gap values and the critical
temperature [so, in fact �(ν) = �(ν,T )]. Once the �(ν) are
determined, other quantities can be calculated. Furthermore,
one can calculate the order parameter, or condensate wave
function, which can be defined by �(rr′) ≡ F(rr′,0).27 It can
be readily shown that one has

�(rr′) =
∑

ν

ψν(r)ψ−ν(r′)�(ν)
1

2ξν

tanh
ξν

2kBT
. (10)

The pairing potential, a quantity of interest in its own right,24

can be calculated through the back-projection

�(rr′) =
∑

ν

ψν(r)ψ−ν(r′)�(ν). (11)

Let us point out here the following. If one assumes that the
effective interaction is given by a δ function20 veff(r − r′) =
−V0δ(r − r′), then the pairing potential is equally ill-defined
[cf. the definition above, after Eq. (3)] because the Dirac δ

function is not a proper function. Nonetheless, since Eqs. (3)
are integral equations, a δ function interaction still leads to a
well defined pair of coupled equations. From these, the gap
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equation is derived by introducing the so-called gap function
�(r) = V0F(rr,0).20 Therefore, in such an approach, the order
parameter and the gap function differ only by a multiplicative
constant and can be treated as essentially the same quantity.
However, the gap function concept loses its usefulness when
studying inhomogeneous systems, and a more natural role is
played by the pairing potential. It is important to keep in mind
that the latter is not equivalent to the order parameter.

III. MULTIGAP SUPERCONDUCTIVITY IN NANOWIRES

For definiteness, in the following we take parameters
corresponding to Al,28 which is a weak coupling supercon-
ductor (so a mean-field approach is applicable), and is also
free-electron-like. To model a nanowire we consider a system
of quasiparticles in a cylindrical potential well of radius
R and length L: V (ρ,φ,z) = 0 for ρ � R, and ∞ other-
wise (R � L). The quasiparticle states are17 ψkmn(ρ,φ,z) =
[πR2LJ 2

|m|+1(ηmn)]−1/2J|m|(ρηmn/R)ei(kz+mφ), where Jm is
the mth order Bessel function of the first kind and ηmn

is its nth zero,30 and k = 2πl/L, with l ∈ Z. k is the
momentum along the wire (we assume periodic boundary
conditions along the z direction and take the limit L → ∞
at the end of the calculation). The eigenenergies are given by
Ekmn = h̄2(k2 + η2

mn/R
2)/2m, that is, a set of nonintersecting

parabolas. For simplicity we assume that the quasiparticle
effective mass is isotropic and equal to the bare electron mass.
For given R, μ (the Fermi level) is determined by the particle
density. The Fermi surface reduces to the discrete set of points
{−k

(mn)
F ,k

(mn)
F }mn, where k

(mn)
F = (2mμ/h̄2 − η2

mn/R
2)1/2 (the

indices mn run over occupied bands only). Naturally the lower
the band minimum (the lower the value of ηmn), the larger
the Fermi momentum. Also, given a state |ν〉 = |kmn〉, its
corresponding time-reversed state is | −ν〉 = | −k −m n〉. To
solve the gap equation (9) we adopt a phenomenological
approximation to the interaction matrix elements Vνν ′ . Fol-
lowing the standard BCS model for bulk superconductivity,
we define20

Vkmn,k′m′n′ ≡ Umn,m′n′

π2RL
θ (εw − |εkmn|)θ (εw − |εk′m′n′ |). (12)

Thus the interaction is effective only within an energy window
εw around μ. The magnitude of the coupling parameters
Umn,m′n′ is estimated with the help of a contact potential
of strength V0, that is, v(r − r′) = −V0δ(r − r′). The above
implicitly determines the effective interaction veff .31 The gap
equation finally becomes

�(mn) =
∑
m′n′

Umn,m′n′�(m′n′)

×
∫ +εw

−εw

dεNm′n′(ε)
1

2ξm′n′
tanh

ξm′n′

2kBT
, (13)

where we switched from the summation over k to an integral
over energy introducing the density of states

Nnm(ε) = θ
(
ε − h̄2η2

mn/2mR2 + μ
)

2π

√
ε − h̄2η2

mn/2mR2 + μ

1

πR2
, (14)

with θ the Heaviside step function.32

(a)

15 20 25 30 35
0

20

40

R (a
0
)

Δ/
Δb

(b)

15 20 25 30 35

1.2

1.4

1.6

R (a
0
)

μ/
μb

(c)

0 25 50 75 100
0

2

4

6

ρ  (a
0
)

Ψ
(ρ

)×
 1

0 
3  (

nm
−

3 )

FIG. 1. (Color online) Gap, normalized to the bulk value [(a)]
and chemical potential, also normalized to the bulk value [(b)] as a
function of nanowire radius for a quasiparticle density of 3.878 nm−3.
(c) Order parameter as a function of center of mass coordinate ρ for a
nanowire with radius 5.06 nm (∼95.62 a0). The above is for the case
in which all couplings have the same value in the gap equation.

Solving Eq. (13) results in multiple gaps, with a different
gap value for each occupied band. But prior to further
discussing our results here, we consider a system studied
in Ref. 18 to show that the present approach describes
essentially the same physics as the BdG method. Thus we
take an electron density of 3.878 nm−3 and a bulk chemical
potential of 900 meV (V0 is denoted g in Ref. 18). We then
consider the case in which the coupling parameters in the gap
equation have all the same single value. Here we take their
average value U = 〈Umn,m′n′ 〉. This results in a single gap
superconductor. In Figs. 1(a) and 1(b) we plot, respectively,
the gap value (normalized to the bulk gap) and the chemical
potential as a function of nanowire radius. In Fig. 1(c) we plot
the order parameter at the center-of-mass coordinate �(r,r),
in which case � depends only on the radial coordinate ρ and
is invariant along the z direction. At T = 0 K, from Eq. (10)
it is straightforward to find

�(ρ) = �

2π2R2

∑
m�0,n

Imn (2 − δm0)
J 2

m(ρ ηmn/R)

J 2
m+1(ηmn)

, (15)

with

Imn =
∫ +εw

−εw

dε/2
√

(ε2 + �2)
(
ε − h̄2η2

mn/2mR2 + μ
)
. (16)

The order parameter is plotted for a nanowire of radius
5.06 nm. The agreement between our results and those in
Figs. 1 and 2 of Ref. 18 is indeed remarkable. As a matter
of fact, seeking the solution of an effective superconducting
Hamiltonian for an inhomogeneous system in terms of the
set of uncoupled quasiparticles states was first proposed
by Anderson for dirty superconductors.26 It appears that
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FIG. 2. (Color online) (a) Plot of the seven �mn(T ) in a
R = 7.5 a0 nanowire; Tc = 4.2T b

c . For comparison, the dashed
line indicates the BCS expression �(T )/kBTc = 3.06(1 − T/Tc)1/2.
(b) Upper panel: Tc as a function of R. Tc increases sharply when a
new band starts to be occupied. The horizontal line indicates T b

c . For
large R, Tc tends to T b

c (not shown here). Lower panel: The ratio of
Tc to the single-gap value T sg

c shows that they differ significantly.

subsequently the scheme fell in disfavor compared to the BdG
method. However, more recently, Tanaka and Marsiglio33 used
the attractive Hubbard model to compare the Anderson scheme
and the BdG method. Studying surfaces and impurities, they
found that in the weak coupling regime the Anderson scheme
captures in fact the essential features of the BdG method.33

Our results above are thus in line with the findings of Tanaka
and Marsiglio.

As already indicated, in the more general case further up,
the gap equation will result in multiple gaps, with a different
gap value for each occupied band. The number of occupied
bands increases rapidly with radius. For illustrative purposes,
we consider a nanowire with only a few bands occupied, that is,
small radius. In Fig. 2(a) we plot the gap values as a function of
temperature for a nanowire of radius R = 7.5 a0 (a0 denoting
the Bohr radius). In this case there are seven occupied bands,
hence seven energy gap values. The critical temperature is
4.2T b

c , that is, at this radius there is a fourfold enhancement
with respect to the bulk value. The dependence on radius is
discussed further down. The ratios �mn(0)/kBTc vary between
1.32 and 1.88. Thus, some of the ratios are below the BCS value
(1.76),20 and some are above. This is akin to what occurs in
many of the known two-gap superconductors, including Fe-
based superconductors such as LiFeAs, in which the smaller
gap has a ratio below the BCS value, while the larger gap has
a ratio above that value.22 The behavior of the gap value with
temperature is also interesting. The long-dash line in Fig. 2(a)
indicates the conventional BCS result �(T )/kBTc = 3.06(1 −
T/Tc)1/2 for Tc − T � Tc.20 Assuming that the square root
behavior near Tc also holds in the present case, we find that
the universal proportionality constant 3.06 has to be replaced
by constants in the interval (2.04,3.06), with different values
for the different gaps. Hence, approaching Tc the gaps tend
to close faster than in conventional BCS theory. Also, our
results indicate that the ratio of the different gaps near Tc

deviate slightly from a constant value, with the smaller gaps
tending more rapidly to zero at Tc. This means that there is

a deviation from the square root behavior near Tc. The above
shows similarities with MgB2. Indeed, the theoretical study
in Ref. 34 finds that both gaps in MgB2 have a square root
behavior for T → Tc, but that, as a consequence of interband
coupling, the proportionality constants differ from the BCS
value. Furthermore, in experiment it has been found that the
ratio of the large gap to the small gap in MgB2 increases with
temperature near Tc, with the smaller gap tending more rapidly
to zero than the larger gap.35

The dramatic effects of confinement are best shown by
the radius dependence of the critical parameters. The gap
equation depends on radius essentially through the Umn,m′n′

strengths and the density of states Nnm(ε) [cf. Eq. (13)]. We
consider the latter first. As R increases, the distance between
the minima of the bands decreases and, at a certain point, a
new band will be occupied. Whenever this happens the density
of states has a drastic change, causing a sharp increase in the
critical values, such as the energy gap. This is similar to what
was found in nanofilms.2,3 As discussed in previous work,
however,18 in nanowires the increase is particularly strong
because the density of states has a van Hove singularity at
the bottom of each band [cf. Eq. (14)]. As a consequence, the
oscillations of the critical parameters as a function of R are
very sharp and large. This is shown for Tc in Fig. 2(b), upper
panel. The oscillations are stronger for smaller R, and slowly
decrease with increasing R, as Tc tends to its bulk value. We
call attention to the fact that because in nanowires the density
of states is a rapidly varying function of energy, one cannot
resort to a calculation of the critical parameters by making the
approximation Nnm(ε) � Nnm(0) within the energy window
determined by εw. This is a long used approximation,16,20

and has also been used in the study of some of the recent
multigap superconductors.36 In essence, the density of states
at the Fermi level renormalizes the coupling strength. But this
is not a valid approximation here. We verified that applying
such an approximation would lead to a severe underestimation
of Tc and of the gap values (more than an order of magnitude
for R = 7.5 a0), even when no van Hove singularity is close
to the Fermi level.

Before discussing the role of the coupling parameters
Umn,m′n′ we point out that their value can be affected by the
electronic density of states, because the latter can affect the
electron-phonon coupling strength.37 This important aspect
falls beyond the scope of the present study and is discussed
further in Sec. IV. The role of the coupling parameters in
Eq. (13) is twofold. First, they determine the degree of de-
generacy of the gap values. This has an important quantitative
and qualitative impact. For instance, if the couplings had all
the same value, there would be a single gap, with further
significant effect on the values of the critical parameters.
To show this we replaced the Umn,m′n′ by a single coupling
strength, namely their average Ūmn,m′n′ , and calculated the
corresponding critical temperature, which we denote T

sg
c . In

the lower panel of Fig. 2(b) we plot the ratio of T
sg
c and the

Tc values in the upper panel. The difference between the two
is manifest, with Tc values more than 100% higher than T

sg
c .

At higher radii (not shown), as Tc tends gradually to its bulk
value, the difference with the single-gap result vanishes.

Second, the Umn,m′n′ determine to a large extent the relative
weight of interband and intraband couplings and, therefore,
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the relative magnitude of the energy gap values. In Fig. 2(a)
the order of the band gap labels reflect how deep below the
Fermi level (μ) are the minima of the different occupied bands;
mn = 01 corresponds to the lowest band minimum and mn =
41 to the highest. One can see that a higher band minimum (van
Hove singularity closer to the Fermi level) does not necessarily
imply a larger gap. Indeed, the band minima for mn = 01, 11,
and 21, for instance, are well below the one for mn = 12, but
the gap corresponding to the latter is smaller. Hence, not only
the number of paired states counts, but also the quality of their
coupling.

Given the high Tc values that can be reached at small
radii [up to 26 K in the range of radii in Fig. 2(b)], it is of
interest to make some comparison with the known high-Tc

superconductors. Inosov and co-workers have recently made
an extensive comparison of the ratio 2�(0)/kBTc vs Tc for
different families of superconductors, including conventional
and unconventional superconductors.22 To calculate this ratio
we have chosen an interval of radii such that Tc sweeps a large
range of values. For R in the interval from 7 to 8 a0, Tc ranges
from 0.29 K at R = 8 a0 to 115 K at R = 7.3 a0. The former
and latter points are labeled A and B, respectively, in Fig. 3(a).
Label C corresponds to the pair R = 7.27 a0 and Tc = 94 K
(below this radius the number of occupied bands drops from
7 to 6, and Tc decreases sharply to values close to those of
point A). We calculate 2�mn(T )/kBTc for the range of radii
comprised by points A, B, and C. For example, consider the
curve for mn = 01 in Fig. 3(b). We see that the corresponding
ratio has a value of 3.27 at the Tc corresponding to point
A in Fig. 3(a), decreases to 2.57 at the Tc corresponding
to B, and slightly increases to 2.67 at the Tc value of C.38

The other gaps show similar but not equivalent behavior. As
the figure shows, for the smaller gap values the ratio clearly
falls below the weak coupling limit (3.52) in the Inosov plot,
while it is slightly above for the larger gaps. The ratios found
are close to those observed in other conventional multigap
superconductors, such as MgB2, Mo3Sb7, or YNi2B2C, but
also some of the ferropnictide superconductors, such as those
of the 111 family.22 Nonetheless, the ratios in the nanowires
does not increase as Tc increases, in contrast to what occurs
for most of the Fe-based and cuprate superconductors. This is
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FIG. 3. (Color online) (a) Tc for a range of small radii R, in which
it varies very strongly, starting with a value of 0.29 K (0.24T b

c ) at A,
reaching a maximum value of 115 K (96T b

c ) at B, and decreasing to
94 K (78T b

c ) at C. (b) Plot of the ratios 2�(T )/kBTc vs Tc. In spite of
the very high-Tc values attained, the ratios fall in the range of values
for conventional superconductors in the Inosov plot [cf. Ref. 22]. The
range of Tc values considered corresponds to the radii in plot (a).

in line with the expectation that the Inosov plot discriminates
between conventional and unconventional superconductors.
On the other hand, the nanowire results seem to insist on
the idea that a high-Tc value may not necessarily require
a particularly strong or unconventional pairing interaction,
and that a suitable electronic structure (e.g., Fermi surface
topology, density of states behavior) might be as important as
the energy scale of the pairing mechanism.

Another property that is widely used to characterize
superconductors is the superfluid density. Its temperature
dependence, for instance, is used to try to determine the sym-
metry of the order parameter, or to find signs of unconventional
superconductivity.39 We can calculate the superfluid density at
temperature T in a nanowire through

ns(T ) = 1

πR2L

∫
d3rd3r ′|�(rr′)|2, (17)

with �(rr′) given by Eq. (10). One readily finds ns(T ) =∑
m�0,n(2 − δm0)2Cmn/16π2R2, with

Cmn =
∫ +εw

−εw

dε
tanh2

√
ε2+�2

mn

2kBT(
ε2 + �2

mn

)√
ε − h̄2η2

mn/2mR2 + μ

. (18)

The superfluid density is typically very low compared to
the total electron density. For example, for R = 7.5 a0 we
have ns/n = 3.45 × 10−5. This follows from the fact that the
states that form Cooper pairs are only those in an energy
window around the Fermi level that is very small compared
to the total bandwidth.40 In Fig. 4 we show our result
for ns(T )/ns(0). We can see that confinement results in a
clear deviation from the empirical behavior of conventional,
phonon mediated, bulk superconductors, the latter following
a 1 − (T/Tc)4 behavior.20 Among approximations of the form
1 − (T/Tc)n, the closest to our result is for n = 3. Thus, our
curve also deviates from the behavior predicted BCS theory
for homogeneous systems. Indeed, in the local limit that later
results in ns(T )/n = 2(1 − T/Tc) close to Tc, while in the
nonlocal limit (not shown in Fig. 4) it results in a curve close
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FIG. 4. (Color online) Plot of the temperature dependence of the
(normalized) superfluid density, showing that near Tc it deviates from
both the BCS local [2(1 − T/Tc)] and nonlocal behaviors. The latter
is close to the empirical behavior of conventional superconductors
[1 − (T/Tc)4].20 The best fit to our result near Tc is of the form
1 − (T/Tc)3.
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to the empirical form.20 The result for for other nanowire radii
is similar.

IV. DISCUSSION

To conclude, some comments are in order regarding some
of the assumptions or approximations made in deriving our
results. Nanowires are strongly anisotropic systems. Hence the
effective mass is likely to be anisotropic as well. Taking this
into account will change the density of states, resulting in, for
example, a change in the Tc dependence on nanowire radius.
The qualitative behavior, however, will remain the same.
Another important approximation, with strong quantitative
consequence, is that the strength of the contact interaction
was taken equal to its bulk value. This assumes that the
phononic and dielectric properties of the nanowire are the
same as those of the bulk. This is a difficult point, but to
make progress toward a quantitative theory in the future it
will be important to address it. Indeed, we applied the present
calculation scheme to nanofilms, taking into account the effects
of confinement on the screened electron-ionic background
interaction. We found that the latter is weakened when the
electronic density of states increases, leading to a decrease

of electron-phonon coupling.41 This possible effect in bulk
superconductors was already pointed out in Ref. 37. This
has an important bearing on the role of shape resonances
in the observed dependence of Tc on nanowire radius. As
we saw above, in the present scheme, when the Fermi level
is close to a van Hove singularity, the values of the critical
parameters, such as Tc and gap values, can be very large.
But it is not clear that this will still be the case with a more
accurate description of electron-phonon coupling. It is also
probably very difficult experimentally to tune the radius of a
nanowire so finely. Maybe some steps in this direction can
be taken by doping. One must recall, nevertheless, that in the
electron gas a peak in the density of states leads to a peak
in the specific heat. This signals an instability that may be
resolved by a phase transition, either structural or electronic
(e.g., transition to a ferromagnetic phase), taking place already
in the normal state. So it may be intrinsically difficult to
exploit the van Hove singularities to obtain very high critical
parameters.
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S. Michotte, Phys. Rev. Lett. 91, 157001 (2003).

7M. Tian, J. Wang, J. S. Kurtz, Y. Liu, M. H. W. Chan, T. S. Mayer,
and T. E. Mallouk, Phys. Rev. B 71, 104521 (2005).

8Y. S. Hor, U. Welp, Y. Ito, Z. L. Xiao, U. Patel, J. F. Mitchell, W. K.
Kwok, and G. W. Crabtree, Appl. Phys. Lett. 87, 142506 (2005).

9M. Tian, J. Wang, N. Kumar, T. Han, Y. Kobayashi, Y. Liu, T. E.
Mallouk, and M. H. W. Chan, Nano Lett. 6, 2773 (2006).

10M. Zgirski and K. Y. Arutyunov, Phys. Rev. B 75, 172509 (2007).
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