toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Galván Moya, J.E.; Peeters, F.M. url  doi
openurl 
  Title Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
  Year (down) 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages 134106,1-134106,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a mean-field description of the zigzag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential r−ne−r/λ, that are confined by a power-law potential (yα). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α and n. Close to the transition point for the zigzag phase transition, the scaling behavior of the order parameter is determined. For α=2, the zigzag transition from a single to a double chain is of second order, while for α>2, the one-chain configuration is always unstable and, for α<2, the one-chain ordered state becomes unstable at a certain critical density, resulting in jumps of single particles out of the chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296289500004 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93583 Serial 1345  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: