toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
  Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 107 Issue 3 Pages 034501-34510  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955986000006 Publication Date 2023-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.4; 2023 IF: 2.366  
  Call Number UA @ admin @ c:irua:196089 Serial 7586  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal Article
  Year 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages 100506  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Capacitive electrical asymmetry effect in an inductively coupled plasma reactor Type A1 Journal Article
  Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 10 Pages 105019  
  Keywords (up) A1 Journal Article; electrical asymmetry effect, inductively coupled plasma, self-bias, independent control of the ion fluxes and ion energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The electrical asymmetry effect is realized by applying multiple frequency power sources

(13.56 MHz and 27.12 MHz) to a capacitively biased substrate electrode in a specific inductively

coupled plasma reactor. On the one hand, by adjusting the phase angle θ between the multiple

frequency power sources, an almost linear self-bias develops on the substrate electrode, and

consequently the ion energy can be well modulated, while the ion flux stays constant within a

large range of θ. On the other hand, the plasma density and ion flux can be significantly

modulated by tuning the inductive power supply, while only inducing a small change in the self-

bias. Independent control of self-bias/ion energy and ion flux can thus be realized in this specific

inductively coupled plasma reactor.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448434100001 Publication Date 2018-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 1 Open Access Not_Open_Access  
  Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:155506 Serial 5069  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Amini, M.N.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Perovskite transparent conducting oxides : an ab initio study Type A1 Journal article
  Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue 41 Pages 415503  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 me, and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000324920400011 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 17 Open Access  
  Notes FWO;Hercules Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:110495 Serial 2574  
Permanent link to this record
 

 
Author Momot, A.; Amini, M.N.; Reekmans, G.; Lamoen, D.; Partoens, B.; Slocombe, D.R.; Elen, K.; Adriaensens, P.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title A novel explanation for the increased conductivity in annealed Al-doped ZnO: an insight into migration of aluminum and displacement of zinc Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 40 Pages 27866-27877  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A combined experimental and first-principles study is performed to study the origin of conductivity in

ZnO:Al nanoparticles synthesized under controlled conditions via a reflux route using benzylamine as a

solvent. The experimental characterization of the samples by Raman, nuclear magnetic resonance (NMR)

and conductivity measurements indicates that upon annealing in nitrogen, the Al atoms at interstitial

positions migrate to the substitutional positions, creating at the same time Zn interstitials. We provide

evidence for the fact that the formed complex of AlZn and Zni corresponds to the origin of the Knight

shifted peak (KS) we observe in 27Al NMR. As far as we know, the role of this complex has not been

discussed in the literature to date. However, our first-principles calculations show that such a complex is

indeed energetically favoured over the isolated Al interstitial positions. In our calculations we also

address the charge state of the Al interstitials. Further, Zn interstitials can migrate from Al_Zn and possibly

also form Zn clusters, leading to the observed increased conductivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413290500073 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 26 Open Access OpenAccess  
  Notes We want to thank the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office (BELSPO) for the financial support. We also acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support via the MULTIMAR WOG project and under project No. G018914. The computational parts were carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules foundation and the Flemish Government (EWI Department). Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:146878 Serial 4760  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A. url  doi
openurl 
  Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal Article
  Year 2023 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 75 Issue Pages 102564  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001065310000001 Publication Date 2023-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited 6 Open Access OpenAccess  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807  
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 419 Issue Pages 114156-12  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987221300001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access Not_Open_Access  
  Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number UA @ admin @ c:irua:197268 Serial 8917  
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Marushkin, K.M.; Gijbels, R.; Férauge, C.; Vasilyev, M.G.; Shelyakin, A.A.; Sokolovsky, A.A. openurl 
  Title Characterization of LPE grown InGaAsP/InP heterostructures: IR-LED at 1.66 μm used for the remote monitoring of methane gas Type A1 Journal article
  Year 1997 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 173 Issue Pages 285-296  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997XC98100008 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.751; 1997 IF: 1.259  
  Call Number UA @ lucian @ c:irua:20459 Serial 324  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Neyts, E.; Bogaerts, A. doi  openurl
  Title The effect of hydrogen on the electronic and bonding properties of amorphous carbon Type A1 Journal article
  Year 2006 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 18 Issue 48 Pages 10803-10815  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000242650600008 Publication Date 2006-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.649; 2006 IF: 2.038  
  Call Number UA @ lucian @ c:irua:60468 Serial 816  
Permanent link to this record
 

 
Author Volkov, V.V.; Luyten, W.; van Landuyt, J.; Férauge, C.; Oksenoid, K.G.; Gijbels, R.; Vasilev, M.G.; Shelyakin, A.A.; Lazarev, V.B. pdf  doi
openurl 
  Title Electron microscopy and mass-spectrometry study of In GaAsP/InP heterostructures (p-i-n diodes) grown by liquid phase epitaxy Type A1 Journal article
  Year 1993 Publication Physica status solidi: A: applied research Abbreviated Journal  
  Volume 140 Issue Pages 73-85  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1993MM00800004 Publication Date 2007-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6159 Serial 945  
Permanent link to this record
 

 
Author Luyten, W.; Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Férauge, C.; Gijbels, R.; Vasilev, M.G.; Shelyakin, A.A.; Lazarev, V.B. doi  openurl
  Title Electron microscopy and mass-spectrometry study of In0.72Ga0.28As0.62P0.38 lasers grown by liquid phase epitaxy Type A1 Journal article
  Year 1993 Publication Physica status solidi: A: applied research Abbreviated Journal  
  Volume 140 Issue 2 Pages 453-462  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Broad area as well as buried heterostructure lasers based on In0.72Ga0.28As0.62P0.38/InP and emitting at 1.3 mum are grown by liquid phase epitaxy and are studied in detail by means of transmission electron microscopy, X-ray diffraction, secondary ion mass-spectrometry, and electroluminescence. The InGaAsP epilayer is found to be well lattice-matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in the InGaAsP alloy. We also report on the high performance characteristics of the infrared lasers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1993MP79700015 Publication Date 2007-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:6156 Serial 946  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P. pdf  doi
openurl 
  Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
  Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 9 Pages 1675-1682  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308942100009 Publication Date 2012-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 31 Open Access  
  Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364  
Permanent link to this record
 

 
Author Saraiva, M.; Chen, H.; Leroy, W.P.; Mahieu, S.; Jehanathan, N.; Lebedev, O.; Georgieva, V.; Persoons, R.; Depla, D. pdf  doi
openurl 
  Title Influence of Al content on the properties of MgO grown by reactive magnetron sputtering Type A1 Journal article
  Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 6 Issue S:1 Pages S751-S754  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the present work, reactive magnetron sputtering in DC mode was used to grow complex oxide thin films, starting from two separate pure metal targets. A series of coatings was produced with a stoichiometry of the film ranging from MgO, over MgxAlyOz to Al2O3. The surface energy, crystallinity, hardness, refractive index, and surface roughness were investigated. A relationship between all properties studied and the Mg content of the samples was found. A critical compositional region for the Mg-Al-O system where all properties exhibit a change was noticed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000272302900144 Publication Date 2009-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 13 Open Access  
  Notes Iwt Approved Most recent IF: 2.846; 2009 IF: 4.037  
  Call Number UA @ lucian @ c:irua:79363 Serial 1613  
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Marushkin, K.; Gijbels, R.; Férauge, C.; Vasilyev, M.G.; Shelyakin, A.A.; Sokolovsky, A.A. pdf  doi
openurl 
  Title LPE growth and characterization of InGaAsP/InP heterostructures: IR-emitting diodes at 1.66 μm: application to the remote monitoring of methane gas Type A1 Journal article
  Year 1997 Publication Sensors and actuators : A : physical Abbreviated Journal Sensor Actuat A-Phys  
  Volume 62 Issue 1/3 Pages 624-632  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Highly effective IR light-emitting diodes operating at the wavelength 1.66 mu m and based on the buried heterostructure In0.88Ga0.12As0.26P0.74/ In0.72Ga0.28As0.62P0.38/In0.53Ga0.47As/InP have been grown by liquid-phase epitaxy (LPE) and characterized in detail by means of transmission electron microscopy (TEM), high-resolution electron microscopy (HREM),electron diffraction (ED), X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS) and electroluminescence measurements. The InGaAsP epilayers are found to be well lattice matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in InGaAsP alloys. A new type of selective CK, gas sensor has been developed and fabricated an the basis of the IR light-emitting diode mentioned above. Especially designed for the remote control of CH4 gas via fibre optics, an integrated optoelectronic readout scheme has been developed and tested, It is shown that the proposed type of sensor can be used for the quantitative remote control of CH4 gas concentration (0.2-100%) via a fibre glass line up to a distance of 2 x 1 km. (C) 1997 Elsevier Science S.A.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos A1997YD90600029 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.499 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.499; 1997 IF: 0.635  
  Call Number UA @ lucian @ c:irua:20455 Serial 1855  
Permanent link to this record
 

 
Author Ignatova, V.A.; Lebedev, O.I.; Watjen, U.; van Vaeck, L.; van Landuyt, J.; Gijbels, R.; Adams, F. pdf  doi
openurl 
  Title Metal and composite nanocluster precipitate formation in silicon dioxide implanted with Sb+ ions Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 92 Issue 8 Pages 4336-4341  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000178318000024 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:39872 Serial 2005  
Permanent link to this record
 

 
Author Ignatova, V.A.; Lebedev, O.I.; Wätjen, U.; van Vaeck, L.; van Landuyt, J.; Gijbels, R.; Adams, F. doi  openurl
  Title Observation of Sb203 nanocrystals in SiO2 after Sb ion implantation Type A1 Journal article
  Year 2002 Publication Microchimica acta Abbreviated Journal Microchim Acta  
  Volume 139 Issue Pages 77-81  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000175560300012 Publication Date 2003-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-3672;1436-5073; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.58 Times cited 3 Open Access  
  Notes Approved Most recent IF: 4.58; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:38378 Serial 2420  
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K. pdf  doi
openurl 
  Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
  Year 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 47 Issue 3 Pages 511-517  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000301994100001 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited Open Access  
  Notes Approved Most recent IF: 2.446; 2012 IF: 1.913  
  Call Number UA @ lucian @ c:irua:97797 Serial 2727  
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A. pdf  doi
openurl 
  Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 6 Pages 065107,1-065107,8  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000263824200024 Publication Date 2009-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 37 Open Access  
  Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:73246 Serial 3110  
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A. pdf  doi
openurl 
  Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 6 Pages 1414-1423  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000288291400011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:87642 Serial 3605  
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K. pdf  doi
openurl 
  Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 578 Issue 578 Pages 133-138  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000351686500019 Publication Date 2015-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 41 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number c:irua:125517 Serial 3626  
Permanent link to this record
 

 
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C. pdf  url
doi  openurl
  Title Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
  Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume Issue Pages 7541-7549  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823193100001 Publication Date 2022-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9  
  Call Number EMAT @ emat @c:irua:189000 Serial 7073  
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964269500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number UA @ admin @ c:irua:194897 Serial 7269  
Permanent link to this record
 

 
Author Pourtois, G.; Lauwers, A.; Kittl, J.; Pantisano, L.; Sorée, B.; De Gendt, S.; Magnus, W.; Heyns, A.; Maex, K. pdf  doi
openurl 
  Title First-principle calculations on gate/dielectric interfaces : on the origin of work function shifts Type A1 Journal article
  Year 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 80 Issue Pages 272-279  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The impact of interfacial chemistry occurring at dielectric/gate interface of P-MOS and N-MOS devices is reviewed through a quick literature survey. A specific emphasis is put on the way the bond polarization that occurs between a dielectric and a metal substrate impacts on the gate work function. First-principle simulations are then used to study the work function changes induced by dopant aggregation in nickel monosilicide metal gates. It is shown that the changes are a natural consequence of the variation of the interface polarization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000231517000062 Publication Date 2005-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 31 Open Access  
  Notes Approved Most recent IF: 1.806; 2005 IF: 1.347  
  Call Number UA @ lucian @ c:irua:95095 Serial 1199  
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M. pdf  doi
openurl 
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 17 Pages 7363-7370  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569375400061 Publication Date 2020-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number UA @ admin @ c:irua:171996 Serial 6546  
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M. pdf  url
doi  openurl
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 13 Issue 49 Pages 11454-11463  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000893147700001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7  
  Call Number UA @ admin @ c:irua:192815 Serial 7263  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 30 Pages 34946-34954  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. url  doi
openurl 
  Title Indentation of graphene nano-bubbles Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue 15 Pages 5876-5883  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000776763000001 Publication Date 2022-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:187924 Serial 7171  
Permanent link to this record
 

 
Author Amini, M.N.; Altantzis, T.; Lobato, I.; Grzelczak, M.; Sánchez-Iglesias, A.; Van Aert, S.; Liz-Marzán, L.M.; Partoens, B.; Bals, S.; Neyts, E.C. url  doi
openurl 
  Title Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods Type A1 Journal article
  Year 2018 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 35 Issue 35 Pages 1800051  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The presence of iodide ions during the growth of gold nanorods strongly affects the shape of the final products, which is proposed to be due to selective iodide adsorption on certain crystallographic facets. Therefore, a detailed structural and morphological characterization of the starting rods is crucial toward understanding this effect. Electron tomography is used to determine the crystallographic indices of the lateral facets of gold nanorods, as well as those present at the tips. Based on this information, density functional theory calculations are used to determine the surface and interface energies of the observed facets and provide insight into the relationship between the amount of iodide ions in the growth solution and the final morphology of anisotropic gold nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441893400002 Publication Date 2018-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 6 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (grant 335078 COLOURATOM to S.B.). T.A., S.V.A. S.B. and E.C.N., acknowledge funding from the Research Foundation Flanders (FWO, Belgium), through project funding (G.0218.14N and G.0369.15N) and a postdoctoral grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). Mozhgan N. Amini and Thomas Altantzis contributed equally to this work. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @c:irua:152998UA @ admin @ c:irua:152998 Serial 5010  
Permanent link to this record
 

 
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C. url  doi
openurl 
  Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 21 Issue 19 Pages 8103-8110  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000709549100026 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:184137 Serial 6857  
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 15 Pages 3789-3804  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541499100001 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:168851 Serial 6770  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: