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Indentation of graphene nano-bubbles

Fahim Faraji,a,b,d Mehdi Neek-Amal,b,c Erik C. Neyts,a,d and François M. Peetersb,d

Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting

graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The

failure points resemble those of viral shells as described by the Föppl–von Kármán (FvK) dimensionless

number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside

the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although

the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are

under higher hydrostatic pressure at low temperatures than at room temperature.

1 Introduction

Van der Waals heterostructures consist of atomically flat thin
materials which adhere to each other by van der Waals attrac-
tion1. The presence of contaminants is inevitable while fabri-
cating these heterostructures. Contaminants may include several
materials spanning from e.g. noble gases to water and hydrocar-
bons. Strong adhesion between the layers may squeeze out the
contaminants into nano scale bubbles2–4. These bubbles were re-
garded as a signature of the adhesion between the layers. They
were used in the investigation of the elastic properties of two-
dimensional materials and to study the properties of highly con-
fined materials5–10.

AFM nano indentation has been used to study the mechanics of
thin materials including nano bubbles, as well as viral shells such
as protein aggregates2,11. Nano indentation may also be used to
determine the hydrostatic pressure of the materials trapped inside
the bubbles. An important question is: up to which size the bub-
ble response against indentation can be described by continuum
theories?

Here, we use molecular dynamics (MD) simulations to study
the nano indentation of graphene nano bubbles. The noble ele-
ments He, Ne and Ar were used as trapped materials. We found
that the bubbles exhibit structural failure upon high indentation.
The failure deformation points and the linear response regime are
well described by continuum theories. Furthermore, the bubbles
exhibit resilience against periodic deformations prior to their fail-
ure points. The hydrostatic pressure of the trapped material was
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found to be highly sensitive to temperature, which was mostly
due to the influence of temperature on the bubbles’ geometry. In
contrast to He, Ne and Ar elements show crystalline structure be-
low their melting pressure at room temperature which is a distinct
signature of the effect of very strong confinement on the proper-
ties of the trapped materials.

2 Simulation details

The simulated system consists of a substrate made of Platinum
(Pt-111), a graphene sheet above the substrate, and a noble ma-
terial trapped between the substrate and graphene. The substrate
dimensions was taken to be 10×10×1 nm and the graphene sheet
dimensions are 7.5×7.5 nm. At the start of the simulation, the
graphene central region was manually lifted to form an artificial
bubble which was filled by one of the three noble materials: He,
Ne and Ar. A spheroidal surface tip with sphere radius of 2 nm
(which corresponds to the smallest commercial AFM tip) made of
silicon was placed above the graphene bubble. The tip had a FCC
atomic structure with a lattice constant of 5.43 Å. Fig. 1 shows
schematically the simulated system.

EAM12 and AIREBO13 potentials were used for the substrate
and the graphene, respectively. The cut-off radii of the AIREBO
potential were set to 0.2 nm, which has been demonstrated
to eliminate non-physical strain hardening14,15 during strong
stretching in graphene16,17. We examined the potential by
stretching a pristine graphene sheet and observed brittle breaking
with a fracture stress of ∼ 107 GPa that agrees with the experi-
mental results18. The trapped materials, as well as the van der
Waals interactions among all elements were modelled using the
12/6 Lennard-Jones (LJ) potential. The employed LJ coefficients
for different materials are summarised in table 1, while the cross
parameters were calculated using the Lorentz-Bertholet mixing
rule. The van der Waals interactions were cut off at 9.8 Å.

The graphene and the trapped materials were initially sub-
jected to an energy minimisation using the conjugate-gradient
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Fig. 1 Schematic of the nano bubble system. Trapped materials are con-

fined between the Pt substrate and the graphene sheet. A spheroidal tip

was placed above the bubble which caused deformation of the graphene

sheet.

Table 1 Parameters for the interaction potentials

Atom type σi(Å) εi/kB(K) Ref.
Pt 2.54 7910 ref. 23
C 3.41 28 ref. 24

He 2.55 10 ref. 25
Ne 2.82 32 ref. 25
Ar 3.47 114 ref. 25
Si 3.33 103 ref. 23

algorithm19. Then, their temperature was gradually increased
from zero to the desired temperature after which NVT simula-
tion was continued until the bubbles geometry, namely, its radius
and maximum height, exhibited a steady configuration. Next, the
tip was moved down with a constant velocity of 0.2 Å/ps until
the tip touched the graphene and deformed it. We found the tip
speed results in a strain rate of ∼ 9× 10

−4 ps−1 in the graphene
bond length (in the area under the indentation), which is typ-
ical in MD simulations20. During the simulations, we reduced
the tip speed until we observed that further reducing the speed
had little impact on the results. To explore the effect of tempera-
ture, we repeated the simulations at two temperatures including
room temperature (T = 300K), and a low temperature (T = 5K).
The newtonian equations of motion were integrated using the
velocity-verlet algorithm with a time step of 1 fs. All simulations
were carried out using the Lammps21 package. Graphical snap-
shots and movies in the supplementary information are created
using the Ovito software22.

3 The bubble geometry

Once the bubbles exhibited a steady geometry, we measured the
radius and maximum height of the bubbles filled by He, Ne or Ar
at two temperatures: 5K and 300K. Moreover, to examine differ-
ent bubble dimensions for each trapped element, the simulations
were performed for two different number of trapped atoms Nt =
800 and Nt = 1100. Initially, the tip was placed sufficiently above
the bubbles (more than the LJ cut-off radius) so that it did not af-
fect the bubbles prior to the indentation. To measure the bubble
radius and height, we plotted the cross section of the graphene
sheets and heuristically defined the radius from the points where
graphene started to move out of plane and the height was defined

Table 2 The radius and height of the graphene nano bubbles for different

trapped elements, temperature and number of trapped atoms Nt

T = 300K T = 5K
Gas/Nt R(Å) h(Å) h/R R(Å) h(Å) h/R
He/800 28.60 6.41 0.22 28.10 6.13 0.22
Ne/800 33.50 7.32 0.22 31.89 7.99 0.25
Ar/800 44.61 9.11 0.20 40.99 9.22 0.22

He/1100 33.48 7.33 0.22 33.33 7.42 0.23
Ne/1100 39.70 7.91 0.20 37.18 8.87 0.24
Ar/1100 48.21 9.92 0.21 46.60 10.92 0.23

as the maximum vertical distance of graphene from the plane it
defines away from the bubble.

The results for the bubble radius and maximum height for dif-
ferent trapped materials, as well as for the two temperatures and
Nt are summarised in table 2. In general, the bubbles seem to fol-
low the universal scaling in their height to radius aspect ratio2.
It is worth mentioning that the bubbles’ radius are sufficiently
larger than 1 nm below which we recently have shown that a
breakdown in the universal scaling is envisaged26. Notice that
the aspect ratio values are in quantitative agreement with experi-
ment (see Table (1) of ref. 26 for the large bubble regime). When
comparing the bubbles radius for the same Nt , the Ar bubbles
have the largest radius, followed by Ne and then He bubbles. We
attribute this to the van der Waals radius of the trapped elements
which is the largest for Ar and the smallest for He (see table 1).
For the same Nt and trapped material, the bubble acquire a larger
radius at room temperature as compared to the low temperature
results. This can be related to the higher adhesion energy be-
tween graphene and the substrate at low temperatures. Specifi-
cally, when temperature is high, the graphene atoms have higher
kinetic energy with stronger vibrations, thereby having lower ef-
fective adhesion to the substrate. This resembles the effect of
temperature in the standard capillary phenomenon. Therefore, at
higher temperatures when the adhesion between graphene and
the substrate (γSG) is lower, the trapped materials could detach
the graphene sheet from the substrate more easily, thereby creat-
ing bubbles with a larger radius.

For the same trapped material and Nt , the low temperature
bubbles exhibit higher maximum heights. To understand this, we
should note that the bubbles boundaries are not clamped in the
simulations, yet it is the interplay between γSG and the trapped
materials hydrostatic pressure which determines the bubbles vol-
ume. The pressure is in turn influenced by the adhesion energy2.
Our calculations show that the hydrostatic pressure of the trapped
materials is surprisingly larger at low temperature than at room
temperature (see the trapped materials: pressure and aggregation
state section). Thus, when the bubbles exert higher pressures on
the trapped materials at low temperatures, and concurrently, ex-
hibit lower radius, it will lead to higher maximum heights as can
be seen in table 2. This is especially noteworthy as at higher tem-
perature, one would expect a higher maximum height because
gas atoms have larger mobility and their structures are more out-
of-plane26. Nevertheless, pressure induced by enhanced adhe-
sion dominates such that the maximum height is higher at low
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Fig. 2 The force applied on the tip versus the bubbles deformation. The

bubbles break at high deformations. The failure points can be described

by Föppl–von Kármán (FvK) dimensionless number Γ = Y R2

κ . The inset

magnifies the region of the partial drops associated with buckling transi-

tions.

temperature.
Further, if we accept that the trapped materials pressure is

given by P = 4πγ
5cν hmax

(see Eq. (23) of ref. 2), where cν is a con-
stant (≈ 1.7) which depends on the graphene poisson ratio, we
find that the adhesion energy γ will be higher at low tempera-
ture to the extent that it compensates for both the higher pres-
sure and maximum height. The latter equation was obtained by
analytically minimizing the total energy of the nano-bubble sys-
tem with respect to the bubble radius and maximum height, and
empirically correlating the free parameters to the experimental
data2. The total energy includes the elastic energy of the de-
formed graphene, the free energy of the trapped materials, and
the vdW energy necessary to separate the graphene from the sub-
strate2.

4 Indentation force-deformation curves

Once the bubbles have reached their steady geometrical shape,
we start moving down the tip. After touching graphene, the tip
deformed the bubble until the point that the bubble eventually
breaks and the graphene sheet ruptures. Snapshots from MD are
shown in supplementary Fig. S1-S4, and supplementary movie
1 which demonstrate the deformation and failure of the bubble
as a result of the indentation. Fig. 2 illustrates the variation of
the vertical force applied on the tip as the tip moves down and
deforms the bubble at room temperature. Here, the horizontal
axis is the indentation depth (δ) normalised by the corresponding
bubble radius (R), and the vertical axis is the vertical component
of the total force on the tip normalised by (

√
κY ). Here, κ is the

bending stiffness and Y is the two-dimensional Young modulus of
the graphene sheet which at room temperature are equal to κ =
0.24 nN-nm and Y = 340 N/m.

As expected, the curves are ascending, that is, the indentation
force increases with increased deformation. It can be seen that
the curves are initially linear, and gradually become nonlinear for
higher deformations. At least two partial drops (at δ/R ≈ 0.06

and 0.13) are discernible in the curves after which the curves be-
come highly nonlinear followed by a dramatic drop. The partial
drops in the curves are associated with the points where the en-
ergy of two different shapes of the graphene nanobubble cross
each other which are commonly referred to as buckling transi-
tions in the engineering literature27 (see the inset of Fig. 2). The
dramatic drop of the curves at high deformation are attributed to
the failure of the graphene bubble.

Being similar in nature to pressurised vessels, one can ask one-
self whether elasticity theory of thin shells28 (TST) is helpful in
interpreting the indentation of our bubbles. One important di-
mensionless number in TST is the so-called Föppl–von Kármán
(FvK) number Γ = Y R2

κ which for a perfect sphere represents the
ratio of the magnitude of the in-plane stretching to the out-of-
plane bending forces. In our problem, κ and Y are the same for
all bubbles, so the bubble radius solely determines the FvK num-
ber (Γ). Using the aforementioned values for κ and Y , the FvK
number for our He bubble with Nt = 800 at room temperature is
calculated as Γ = 11,588 (which we will refer to Γ0 hereinafter).
The FvK values for the other bubbles normalised to Γ0 are given
as legend in Fig. 2. Interestingly, we see that the failure point of
the bubbles can be predicted from their FvK number: the higher
the FvK number the lower δ/R for bubble failure. This is valid to
the extent that the FvK number of the He bubble with Nt = 1100
is quite close and slightly higher than that of the Ne bubble of Nt

= 800, and the He bubble fails for a slightly lower δ/R. Inter-
estingly, this description is similar to what has been reported in
experiments on failure of viral shells29. Notice that, the failure
force is not affected by the FvK number but it is affected by the
trapped material.

Similar curves are found for low temperature (T = 5K) which
is illustrated in supplementary Fig. S5. Contrary to room tem-
perature, all the curves fail almost at the same δ/R ( ≈ 0.27).
The Γ values in the legend of Fig. S1 were calculated based on
the κ and Y values at room temperature. Basically, these material
properties depend on temperature, and specially in the case of
the bending stiffness, the issue is still under debate and the liter-
ature on it is controversial30–32. To further investigate this issue,
we examined the local strain rates of Ne bubbles with Nt = 800
and Nt =1100 at room temperature and low temperature. Sup-
plementary Figs. S6-S9 illustrate strain rates of the bond length
across the graphene sheet for these four bubbles just before the
graphene sheet failed. The maximum local strain for Nt = 800
bubbles is larger than for Nt = 1100 bubbles at both tempera-
tures (see the maximum strain rate in the colour bars next to the
contour plots). While the precise quantitative values of the lo-
cal strain rates highly depend on the failure definition, as well as
how often the MD data are extracted, the difference between the
maximum local strain rates associated with the two Nt numbers is
higher at low temperature than at room temperature. The differ-
ence at low temperature is four times larger. Therefore, at room
temperature, bubbles rupture at relatively close deformations, so
that when the deformation rate is normalised with the bubble
radiuses (x-axis of Fig. 2), the difference between bubbles of dif-
ferent diameters (and consequently different FvK numbers) will
be readily apparent. On the contrary, the failures at low tempera-
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ture occur at different deformations such that after normalisation,
the influence of deformation is canceled out by the influence of
radius, and the curves drop at the same breaking point.

Additionally, it is evident that the maximum local strain rates
are higher at low temperatures than at room temperatures (Figs.
S8 and S9 compared to Figs. S6 and S7). It is in accordance with
the fact that fracture stress of graphene increases with decreasing
temperature33. In order to explain why the maximum strain rates
at room temperature are close to each other as opposed to the re-
sults at low temperatures, we attribute it to graphene’s increased
flexibility at room temperature. By having ripples with enhanced
amplitudes at room temperature, graphene becomes more adapt-
able, so that the area under stress in both Nt numbers becomes
similar. At low temperature, graphene becomes rigid and Nt num-
bers (and radiuses) begin to show their influence. It is worth
noting that at both temperatures, the influence of Nt numbers is
more pronounced at the bubble edges rather than the stress area
(see supplementary Figs. S10 and S11). A quantitative investiga-
tion of how the breaking point is sensitive to the changes of FvK
number over a continuous temperature range is beyond the scope
of the current work. Nevertheless, we expect that the sensitivity
gradually decreases from room temperature to a point of insensi-
tivity at low temperature. It is envisioned that at higher tempera-
tures, the sensitivity will increase until a saturation asymptote.

Lastly, we investigated the reversibility of the deformations,
and whether or not our graphene nano bubbles are vulnerable
against periodic indentations, similar to the concept of fatigue.
For this purpose, we applied a cycling back and forth indenta-
tion to the Ne bubble of Nt = 800 at room temperature until the
deformation δ/R = 0.20 which is before the bubble failure, yet
after the two partial buckling transitions. Fig. 3 illustrates the
resulted force-deformation curves after 50 cycling indentations.
The bubble indeed exhibits resilience against fatigue while clear
hysteresis can be observed. The hysteresis starts to develop after
the first bucking transition, before which the deformations are re-
versible for small indentation. We also examined the fatigue and
reversibility for the same bubble at low temperature. Its graph is
similar to Fig. 3 and is given in supplementary Fig. S12.

5 Elasticity theory of thin shells (TST)

For small indentations when the relation between the indentation
force and the deformation is still linear, TST predicts the total free
energy H of a pressurised shell of a perfect sphere system as

H =
∫

dS{1

2
κ(∆ζ )2 +

1

2
τ(ζ )2 +

1

2
Y (

2ζ

R
)2} (1)

where ζ = ζ (r) is the indentation profile, τ the osmotic pres-
sure, and dS the surface differential. Minimizing the energy with
respect to the indentation profile yields F.R ≈ 8

√
κY ζ for the case

of zero osmotic pressure. This means that the shell acts like a
simple harmonic spring with a spring constant of K1 = 8

√
κY/R.

Nevertheless, by taking into account the osmotic pressure, two
springs in series are formed, one originates from the shell elastic-
ity and the other from the inside pressure.

Table 3 summarises the K1 values calculated for the four bub-
bles shown in Fig. 2, as well as the slope of their curve (KMD)

Fig. 3 The force-displacement curve for periodic indentation after 50

cycles for a Ne bubble with number of trapped atoms Nt = 800 at room

temperature. The bubble is resilient against fatigue. Irreversibility in the

curves develops after the partial buckling transitions resulting in hysteresis

in the curves.

Table 3 Force-deformation curves slope calculated from MD and contin-

uum theories

Nt 800 1100
Gas He Ne He Ne

KMD (N/m) 88.66 98.23 56.49 82.44
K1,T ST (N/m) 25.27 21.57 21.58 18.20

K2 = πPR (N/m) 13.48 16.69 14.17 16.77

before the first buckling transition where the curves are linear.
Comparing the results, we see that TST relatively underestimates
the slope of the curves, however the values are still of the same
order of magnitude.

One should note that our nano bubbles are not perfect spheres
which violates the initial assumption of Eq. 1. Moreover, the bub-
bles support hydrostatic pressures of the order of GPa (see the
trapped materials: pressure and aggregation state). Therefore,
the calculated K1 values from TST, while neglecting the osmotic
pressure, are expected to underestimate the slope of the curves.

Comparing the KMD results, we can see that the values for Nt

= 800 are higher than for Nt = 1100. The low Nt bubbles have
smaller radius, thereby having higher shell spring constant as is
evident in the K1 formula. Nevertheless, the KMD values of the Ne
atoms are clearly larger than for the He bubbles, even comparing
the Ne bubble of Nt = 800 and He bubble of Nt = 1100 whose
shape were rather identical (refer to table 2). We will show in
the followings that, for the same Nt , the trapped materials hydro-
static pressure are distinctly larger for the Ne bubbles than for
the He bubbles. Hence, the higher KMD values for the Ne bubbles
further emphasises the significance of the spring originating from
the trapped materials hydrostatic pressure.

Alternatively, using the analytical methods of ref. 34, the force-
deformation slopes (F/δ) can be estimated as K2 = πPR. Val-
ues of K2 for the same bubbles are also summarised in table 3.
The latter relation has been obtained by ignoring the shell out of
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plane bending energy and we restricted ourselves to the in-plane
stretching energy. The length scale κ/Y representing the ratio of
the bending to stretching forces is ∼ 0.25 Å for graphene, which is
far below our smallest bubbles maximum heights (6.4 Å). There-
fore, ignoring the bending energy is a reasonable approximation.
Arithmetic summation of the K1 and K2 values, as two springs in
series, would get us closer to the KMD values. We conclude that
the TST relations for perfect spheres provides us with a simple
interpretation of the force-deformation slopes for small deforma-
tion.

Using TST in interpreting the force-deformation slopes after
the buckling transitions where the curves exhibit highly nonlin-
ear behaviour involves solving the highly nonlinear sets of dif-
ferential equations known as the Föppl–von Kármán equations
. These equations cannot be solved analytically and necessitates
numerical computations such as finite-element analysis which are
beyond the scope of our study. This further points out the sig-
nificance of molecular simulations in studying the mechanics of
graphene nano bubbles.

It is worth noting that TST commonly predicts nonlinearity of
the force-deformation curves in deformations beyond the length
scale

√

κ/Y . For our smallest bubble (He bubble of Nt = 800),
this yields δ/R ≈ 0.01, while our nano bubbles exhibited linear
behaviour until δ/R ≈ 0.05 (see Fig. 2), which further extends
the applicability of the continuum theory.

6 The trapped materials: pressure and aggregation

state

Graphene nano bubbles have been known to withstand extreme
hydrostatic pressures35. Since the pressure of the trapped ma-
terials originates from the van der Waals adhesion between the
graphene sheet and the substrate, it is customary to refer to it as
the van der Waals pressure2. Next, we calculate the trapped ma-
terials hydrostatic pressure during the indentation of the bubbles.

The pressure values were calculated using the stress formula-
tion36 that was found to be valid for systems even away from
either equilibrium or homogeneity. Fig. 4 illustrates the values
of the pressures for Ne bubbles versus the tip displacement, for
different values of Nt and temperature. The pressure values for
He and Ar bubbles are illustrated in supplementary Figs. S13
and S14. It is worth reviewing how the pressure is calculated
here. Under hydrostatic condition, a simple force balance for an
infinitesimal volume inside the system yields the hydrostatic pres-
sure36 to be as P = 1

3
(σxx +σyy +σzz) where σxx, σyy and σzz are

the internal normal stress components. The normal stress can
then be determined with the summation of two terms including:
the interatomic forces and the momentum flux due to the inner-
diffusion of the atoms.

In the following we will find that the trapped materials of Ne
and Ar bubbles are in the solid state, and exhibit a crystalline
structure. For He bubbles they are in the liquid state with re-
stricted inter-diffusion. Therefore, atomic movements away from
their crystalline lattices are not anticipated, and the bubbles’ pres-
sure stems from the first term of the normal stress, that is, the
interatomic interactions. Comparing the results, we notice that

Fig. 4 Trapped materials hydrostatic pressure for Ne bubbles as function

of tip displacement for different Nt and temperatures. The curves are

guide to the eye.

the pressure of Ne bubbles, for the same Nt , are larger than for
He and Ar bubbles. The stronger interatomic interaction of Ne
atoms as compared to He atoms results in higher pressure inside
the Ne bubbles than He bubbles. Ar bubbles, on the other hand,
although have stronger interactions, acquire much larger volumes
which suppresses the effect of atomic interactions resulting in a
lower pressure of Ar bubbles than Ne bubbles.

Surprisingly, the pressure graphs show that the trapped mate-
rials have higher pressure at low temperature than at room tem-
perature. We found in table 2 that the bubble radius is smaller at
low temperature. Graphene compresses the trapped materials in
the radial direction more at low temperature than at room tem-
perature, and it is as if a substance is subjected to an external
compression ensuing normal stresses inside the substance. A pos-
sible argument could be that some of the trapped materials are in
the solid state, and therefore the force balance of the stress for-
mulation should involve shear stresses as well, as solids, contrary
to liquids, withstand shear stresses at equilibrium. Our MD cal-
culations shows shear stresses for all bubbles that are one order
of magnitude smaller than the normal stresses, therefore would
have minor influence on the force balance.

The pressure values increase with increased indentation. As
expected, with increasing external force from the tip, the normal
stresses inside the trapped material increases, and consequently
the pressure increases. Moreover, we will show in the following
that the indentation increases the trapped materials’ surface to
volume ratio, and the pressure in a solid material is expected to
increase with increased surface to volume ratio37.

To further understand the structure and aggregation state of
the trapped materials at room temperature, we calculated the ra-
dial distribution function (RDF) and the number density distri-
bution of the trapped materials (in the direction perpendicular
to the substrate) for times before the indentation and after the
indentation in the last time frames prior to the graphene failure.
Fig. 5 (a-c) illustrates the number density distributions before and
after the indentation. The graphs exhibit a layered structure. The
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Fig. 5 Number density graphs for bubbles at room temperature before and after the indentation. The trapped materials apparently exhibit a layered

structure. Indentation reduces the number of materials layers by one (a-c). Radial distribution function (RDF) for each of the three layers of trapped

materials before the indentation (d-f) and the two layers of trapped materials after the indentation (g-i). The He atoms show a liquid state while Ne

and Ar atoms exhibit a more crystalline structure.

trapped material has three distinct layers before the indentation
which is reduced to two layers upon indentation. This explains
the increase of the trapped materials surface to volume ratio.

Fig. 5 (d-f) illustrates the RDF graphs for each of the three lay-
ers of the trapped materials (identified in the number density
graphs) before the indentation. The curves of the three layers
are more or less the same. We depicted the curves for the bottom
layers which contain the majority of atoms in each bubble with
thicker lines for a better illustration. RDF graphs exhibit only a
second peak for He atoms while there are additional peaks for
Ne and Ar atoms indicating that He atoms are in the liquid state
while Ne and Ar atoms are in the solid states. A look at our MD
trajectories confirm that Ne and Ar form a stable crystalline struc-
ture, while He show a more disordered atomic arrangement yet
with restricted dynamic arrangements (see supplementary movies
2-4). We conclude that Ne and Ar are in the solid state and He is
in the liquid state.

Similarly, Fig. 5 (g-i) shows the RDF graphs for the two layers
of trapped materials after the indentation. The curves for each
material are similar to those before the indentation suggesting
that the influence of indentation on the trapped materials’ aggre-
gation state is not that significant. The plotted results are for Nt

= 800, while the results for Nt = 1100 are very similar.

We compare the trapped materials’ pressure with the solidifi-
cation pressure of their bulk condition. Parameterisations of Si-
mon’s law for He38, Ne39 and Ar38 yield solidification pressure at
room temperature of Ps = 12.09 GPa for He, Ps = 4.79 GPa for Ne,

and Ps = 1.35 GPa for Ar. Interestingly, the calculated pressure
of Ne and Ar bubbles (1.59 GPa and 1.14 GPa, respectively) are
below their bulk solidification pressure. We attribute this to the
effect of strong confinement which further elucidates the effect of
confinement on the materials properties.

Lastly, in order to verify that the solidification results from the
effect of confinement and not from the LJ model, we performed
a few extra simulations. With the same LJ parameters used here,
we simulated Ne and Ar gases in an isothermal-isobaric (NPT)
ensemble (at room temperature and the corresponding bubble
pressures) within a periodic box. The uncertainty in the predic-
tion of melting lines in LJ models can be attributed to the size
effect or the MD interaction cut-off40. Therefore, we repeated
the simulations with two different numbers of atoms (1100 and
62500), using 1 nm or 2 nm cut-off distances in each case. Sup-
plementary Fig. 15 illustrates RDF graphs for different cases, and
supplementary movies 5 and 6 show the Ne and Ar boxes with
1100 atoms and a 1 nm cut-off. The RDF graphs or movies show
that the gases are in the liquid state, so we can infer that the so-
lidification of the trapped materials inside the bubbles originates
from confinement.

7 Conclusions

We investigated the effect of nano indentation of graphene nano
bubbles using molecular dynamics simulation. The bubbles struc-
tural failure can be predicted from the elastic properties of
graphene and the bubbles radius in terms of the Föppl–von Kár-
mán (FvK) dimensionless number. The continuum elasticity the-

6 | 1–7



ory of thin shells qualitatively explains the linear response of the
bubble against the force applied from the indentation tip. The
bubbles do not degrade while being subjected to cycling defor-
mations when below the failure point. Ne and Ar atoms inside
the nano-bubble are ordered into a crystalline state for pressures
lower than their bulk melting pressure because of the highly con-
finement. This study sheds light on the important feature of nano-
indentation of nano-bubbles.
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