|
Record |
Links |
|
Author |
Momot, A.; Amini, M.N.; Reekmans, G.; Lamoen, D.; Partoens, B.; Slocombe, D.R.; Elen, K.; Adriaensens, P.; Hardy, A.; Van Bael, M.K. |
|
|
Title |
A novel explanation for the increased conductivity in annealed Al-doped ZnO: an insight into migration of aluminum and displacement of zinc |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Physical chemistry, chemical physics |
Abbreviated Journal |
Phys Chem Chem Phys |
|
|
Volume |
19 |
Issue |
40 |
Pages |
27866-27877 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
A combined experimental and first-principles study is performed to study the origin of conductivity in
ZnO:Al nanoparticles synthesized under controlled conditions via a reflux route using benzylamine as a
solvent. The experimental characterization of the samples by Raman, nuclear magnetic resonance (NMR)
and conductivity measurements indicates that upon annealing in nitrogen, the Al atoms at interstitial
positions migrate to the substitutional positions, creating at the same time Zn interstitials. We provide
evidence for the fact that the formed complex of AlZn and Zni corresponds to the origin of the Knight
shifted peak (KS) we observe in 27Al NMR. As far as we know, the role of this complex has not been
discussed in the literature to date. However, our first-principles calculations show that such a complex is
indeed energetically favoured over the isolated Al interstitial positions. In our calculations we also
address the charge state of the Al interstitials. Further, Zn interstitials can migrate from Al_Zn and possibly
also form Zn clusters, leading to the observed increased conductivity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000413290500073 |
Publication Date |
2017-10-09 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1463-9076 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.123 |
Times cited |
26 |
Open Access |
OpenAccess |
|
|
Notes |
We want to thank the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office (BELSPO) for the financial support. We also acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support via the MULTIMAR WOG project and under project No. G018914. The computational parts were carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules foundation and the Flemish Government (EWI Department). |
Approved |
Most recent IF: 4.123 |
|
|
Call Number |
EMAT @ emat @c:irua:146878 |
Serial |
4760 |
|
Permanent link to this record |