toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lindeboom, R.E.F.; Ilgrande, C.; Carvajal-Arroyo, J.M.; Coninx, I.; Van Hoey, O.; Roume, H.; Morozova, J.; Udert, K.M.; Sas, B.; Paille, C.; Lasseur, C.; Ilyin, V.; Clauwaert, P.; Leys, N.; Vlaeminck, S.E. url  doi
openurl 
  Title Nitrogen cycle microorganisms can be reactivated after Space exposure Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal  
  Volume 8 Issue Pages 13783  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10(-3)-10(-4) g (gravitational constant) and 687 +/- 170 mu Gy (Gray) d(-1) (20 +/- 4 degrees C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 degrees C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444501200063 Publication Date 2018-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153641 Serial 8309  
Permanent link to this record
 

 
Author Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; Lindeboom, R.E.F.; Sas, B.; Rabaey, K.; Boon, N.; Ronsse, F.; Geelen, D.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrogen cycling in bioregenerative life support systems : challenges for waste refinery and food production processes Type A1 Journal article
  Year 2017 Publication Progress in aerospace sciences Abbreviated Journal  
  Volume 91 Issue Pages 87-98  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404699800005 Publication Date 2017-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-0421; 1873-1724 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148996 Serial 8310  
Permanent link to this record
 

 
Author Peng, L.; Sun, J.; Liu, Y.; Dai, X.; Ni, B.-J. url  doi
openurl 
  Title Nitrous oxide production in a granule-based partial nitritation reactor : a model-based evaluation Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal  
  Volume 7 Issue Pages 45609  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R-2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398238200001 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:142397 Serial 8311  
Permanent link to this record
 

 
Author Brauns, E.; van Hoof, E.; Huyskens, C.; de Wever, H. doi  openurl
  Title On the concept of a supervisory, fuzzy set logic based, advanced filtration control in membrane bioreactors Type A1 Journal article
  Year 2011 Publication Desalination and water treatment Abbreviated Journal  
  Volume 29 Issue 1/3 Pages 119-127  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The filtration process within a membrane bioreactor (MBR) is mostly controlled in a classic way through typical set-points such as aeration flow rate, filtration duration, backwash frequency or relaxation duration. The values of these filtration set-points result from experience and remain often unchanged during the installations operational lifetime. Filtration is dictated considerably by membrane fouling phenomena. The fouling potential of the mixed liquor however can significantly fluctuate, even daily, from changing influent characteristics. Fixed set-point values thus may represent sub-optimal filtration conditions. Consequently, a supervising advanced control system, being able to continuously adapt the set-points values would be beneficial regarding the MBR filtration process optimization. Such optimization could reduce the corresponding MBR energy consumption, e.g. linked to the filtration related membrane aeration. An Advanced Control System (ACS) based on Fuzzy Set Logic (FSL) is introduced here, enabling to supervise an existing classic membrane filtration control system. Such ACS is able to daily (or even more frequent) optimize the set-points of the underlying classic control system, from the input of various sensor and process parameter values. The theoretical background and practical implementation of the FSL based ACS concept is explained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291314400014 Publication Date 2011-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-3994; 1944-3986 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90094 Serial 8328  
Permanent link to this record
 

 
Author Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
  Year 2019 Publication Chemosphere Abbreviated Journal  
  Volume 215 Issue Pages 342-352  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450383400038 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153978 Serial 8350  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Verreydt, G.; Bronders, J.; van Keer, I.; Diels, L.; Vanderauwera, P. pdf  doi
openurl 
  Title Passive samplers for monitoring VOCs in groundwater and the prospects related to mass flux measurements Type A1 Journal article
  Year 2010 Publication Ground water monitoring and remediation Abbreviated Journal  
  Volume 30 Issue 2 Pages 114-126  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Measurement and interpretation of mass fluxes in favor of concentrations is gaining more and more interest, especially within the framework of the characterization and management of large-scale volatile organic carbon (VOC) groundwater contamination (source zones and plumes). Traditional methods of estimating contaminant fluxes and discharges involve individual measurements/calculations of the Darcy water flux and the contaminant concentrations. However, taken into account the spatially and temporally varying hydrologic conditions in complex, heterogeneous aquifers, higher uncertainty arises from such indirect estimation of contaminant fluxes. Therefore, the potential use of passive sampling devices for the direct measurement of groundwater-related VOC mass fluxes is examined. A review of current passive samplers for the measurement of organic contaminants in water yielded the selection of 18 samplers that were screened for a number of criteria. These criteria are related to the possible application of the sampler for the measurement of VOC mass fluxes in groundwater. This screening study indicates that direct measurement of VOC mass fluxes in groundwater is possible with very few passive samplers. Currently, the passive flux meter (PFM) is the only passive sampler which has proven to effectively measure mass fluxes in near source groundwater. A passive sampler for mass flux measurement in plume zones with regard to long-term monitoring (several months to a year) still needs to be developed or optimized. A passive sampler for long-term monitoring of contaminant mass fluxes in groundwater would be of considerable value in the development of risk-based assessment and management of soil and groundwater pollutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277620400009 Publication Date 2010-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-3629 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:82757 Serial 8363  
Permanent link to this record
 

 
Author Muys, M.; Coppens, J.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Photosynthetic oxygenation for urine nitrification Type A1 Journal article
  Year 2018 Publication Water science and technology Abbreviated Journal  
  Volume 78 Issue 1 Pages 183-194  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445517100020 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152908 Serial 8381  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Seuntjens, D.; Han, M.; Kerckhof, F.-M.; Boon, N.; Al-Omari, A.; Takacs, I.; Meerburg, F.; De Mulder, C.; Wett, B.; Bott, C.; Murthy, S.; Carvajal Arroyo, J.M.; De Clippeleir, H.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 138 Issue Pages 37-46  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.061.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431747300005 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149976 Serial 8385  
Permanent link to this record
 

 
Author Kim, E.; Roosen, J.; Horckmans, L.; Spooren, J.; Broos, K.; Binnemans, K.; Vrancken, K.C.M.; Quaghebeur, M. pdf  doi
openurl 
  Title Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter Type A1 Journal article
  Year 2017 Publication Hydrometallurgy Abbreviated Journal  
  Volume 169 Issue Pages 589-598  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Two routes were investigated to selectively recover lead and minor metals (Cu, Ni, Zn) from a sulfide-rich lead smelter residue, matte. The first route comprises a two-step leaching process that combines Fe(III)-HNO3 leaching with roasting, followed by water leaching. In the first step, the efficiency of Pb leaching was 90% at the optimum condition (L/S ratio 8, 0.5 mol.L-1 HNO3, 0.15 mol.L-1 Fe(III), 25 degrees C). In the second step, roasting at 600 degrees C followed by water leaching at 50 degrees C selectively leached Ni, Cu, and Zn while fully converting iron sulfides to oxides. One-step oxidative pressure leaching in HNO3 was investigated as an alternative to simultaneously leach Pb, Cu, Ni and Zn. At the optimal conditions (130 degrees C, 60 min, 0.3 mol.L-1 HNO3, 0.07 mol.L-1 Fe(III), L/S ratio 20), Pb, Cu, Zn and Ni leaching were 92, 60, 70 and 66%, respectively, while Fe leaching remained low (2%). The leachates obtained from both leaching routes were treated by ion-exchange adsorption with diethylenetriaminepentaacetic acid (DTPA) functionalized chitosan-silica hybrid materials to investigate the selective recovery of Cu, Zn and Ni. The adsorption order appeared to be in the same order as the corresponding stability constants for complexes between the respective metal ions and free DTPA: Ca(II) < Zn(II) < Pb (II) approximate to Ni(II) < Cu(II). This allows not only to selectively recover Cu, Zn and Ni from the leachates, but also to mutually separate them by using the functionalized resin as a stationary phase in column chromatography. To avoid adsorbent contamination, Fe(III) and Pb(II) may be removed from the leachates in a pre-treatment step. Based on these results, the investigated methods can be combined as process steps of two possible routes for the selective recovery of valuable metals from the studied secondary lead smelting residue. The two-step leaching process seems to be superior since a more concentrated solution of Cu, Ni, and Zn is produced in the 2nd leaching step with low capital cost.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401878200070 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144300 Serial 8414  
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
  Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume 58 Issue 28 Pages 12751-12765  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476686000027 Publication Date 2019-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162122 Serial 8416  
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 217 Issue Pages 165-172  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380226300023 Publication Date 2016-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139912 Serial 8421  
Permanent link to this record
 

 
Author Shi, P.; Liu, M.; Yu, X.; Gielis, J.; Ratkowsky, D.A. url  doi
openurl 
  Title Proportional relationship between leaf area and the product of leaf length and width of four types of special leaf shapes Type A1 Journal article
  Year 2019 Publication Forests (19994907) Abbreviated Journal  
  Volume 10 Issue 2 Pages 178  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The leaf area, as an important leaf functional trait, is thought to be related to leaf length and width. Our recent study showed that the Montgomery equation, which assumes that leaf area is proportional to the product of leaf length and width, applied to different leaf shapes, and the coefficient of proportionality (namely the Montgomery parameter) range from 1/2 to π/4. However, no relevant geometrical evidence has previously been provided to support the above findings. Here, four types of representative leaf shapes (the elliptical, sectorial, linear, and triangular shapes) were studied. We derived the range of the estimate of the Montgomery parameter for every type. For the elliptical and triangular leaf shapes, the estimates are π/4 and 1/2, respectively; for the linear leaf shape, especially for the plants of Poaceae that can be described by the simplified Gielis equation, the estimate ranges from 0.6795 to π/4; for the sectorial leaf shape, the estimate ranges from 1/2 to π/4. The estimates based on the observations of actual leaves support the above theoretical results. The results obtained here show that the coefficient of proportionality of leaf area versus the product of leaf length and width only varies in a small range, maintaining the allometric relationship for leaf area and thereby suggesting that the proportional relationship between leaf area and the product of leaf length and width broadly remains stable during leaf evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460744000102 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157200 Serial 8427  
Permanent link to this record
 

 
Author Alloul, A.; Wille, M.; Lucenti, P.; Bossier, P.; Van Stappen, G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Purple bacteria as added-value protein ingredient in shrimp feed : Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress Type A1 Journal article
  Year 2021 Publication Aquaculture Abbreviated Journal Aquaculture  
  Volume 530 Issue Pages 735788  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aquafeeds contain protein ingredients such as fishmeal and soybean meal, yet their production puts pressure on the environment. Finding novel protein sources such as dried microbial biomass produced on recovered or renewable resources, so-called single-cell protein or microbial protein, can contribute to a more sustainable aquaculture industry. New microbial protein sources are emerging with photoheterotrophic grown purple non‑sulfur bacteria (PNSB) showing high potential, yet research of PNSB as added-value protein ingredient is limited. This research studied their use as a protein source for the white leg shrimp (Penaeus vannamei) and investigated the shrimp's tolerance against Vibrio and ammonia stress. A 28-day shrimp feeding trial was performed with a commercial formulation without PNSB as experimental control (diet i), two pure PNSB species, namely Rhodopseudomonas palustris (diets ii-iii), Rhodobacter capsulatus (diets iv-v) at two protein inclusion levels of 5 and 11 g PNSBprotein 100 g−1 feedprotein and a PNSB enriched culture at a protein inclusion level of 11 g PNSBprotein 100 g−1 feedprotein (diet vi). For the shrimp fed with Rb. capsulatus, 5–25% higher individual weights (p < .05) and better feed conversion ratios were observed relative to the commercial diet (1.3–1.4 vs. control 1.7 g feed g−1 biomass; p < .05). The diet containing Rps. palustris at 5 g PNSBprotein 100 g−1 feedprotein inclusion also showed higher individual weights (26%, p < .05) and a better feed conversion ratio compared to the commercial feed (1.3 vs. control 1.7 g feed g−1 biomass; p < .05). The challenge test subsequent to the feeding trial showed a higher tolerance against ammonia (3 mg N L−1) for shrimp fed with Rps. palustris (survival 63–75% vs. 8% commercial diet; p < .05). For a post-feeding challenge test with Vibrio parahaemolyticus TW01, mortality rates were equal among all treatments. Yet, in vitro tests in 96-Well plates and agar spot assays showed that the PNSB species (i) Rps. palustris, (ii) Rb. capsulatus, (iii) Rb. sphaeroides, (iv) Rhodospirillum rubrum and (v) Afifella marina suppressed the pathogens V. parahaemolyticus TW01 and V. campbellii LMG 21363. Overall, this study demonstrated the potential of PNSB as an added-value protein ingredient in shrimp nursery feed. This can contribute to a circular economy, as PNSB can be cultivated on recovered or renewable resources (e.g. wastewater).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582169700073 Publication Date 2020-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0044-8486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.57 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.57  
  Call Number UA @ admin @ c:irua:170549 Serial 8429  
Permanent link to this record
 

 
Author Kim, E.; Horckmans, L.; Spooren, J.; Broos, K.; Vrancken, K.C.M.; Quaghebeur, M. pdf  doi
openurl 
  Title Recycling of a secondary lead smelting matte by selective citrate leaching of valuable metals and simultaneous recovery of hematite as a secondary resource Type A1 Journal article
  Year 2017 Publication Hydrometallurgy Abbreviated Journal  
  Volume 169 Issue Pages 290-296  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Anew recycling process, according to the zero-waste concept, was investigated for an iron rich waste stream, more specifically a secondary lead smelting matte. The process consists of a selective citrate leaching of Pb, Cu, Ni and Zn in combination with a roasting step, leading to a simultaneous recovery of hematite as a secondary iron resource. The parameters, such as leaching time, leaching temperature, H2O2 concentration and roasting temperature, were experimentally optimized. The maximum Pb leaching efficiency was 93% and the leachability of Cu (33%) and Zn (11%) increased slightly in the presence of 0.5 M H2O2 in 1 M citrate at 25 degrees C and pH 5.5. Importantly, almost no Fe was leached (< 0.6%) from the iron rich matrix material at this condition allowing for a maximal recovery of hematite as a secondary resource after further treatment (i.e. roasting or sulfur removal). The leachability of Pb, Cu, Ni and Zn was strongly affected by the roasting temperature. Maximum leaching efficiency in 1 M citrate (25 degrees C, L/S ratio 10, pH 6.5) was 93% for Pb, 80% for Cu and 60% for Zn at a roasting temperature of 600 degrees C, while for Ni the maximum leaching efficiency of 53% was reached after roasting at 650 degrees C. Furthermore, when oxidative roasting was applied, the leaching residue consists dominantly of hematite (Fe2O3) with minor quantities of PbSO4, which can be used as pig iron ore (Fe > 60 wt%). (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401878200035 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144298 Serial 8463  
Permanent link to this record
 

 
Author De Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; De Paepe, K.; Demey, D.; Coessens, W.; Lamaze, B.; Verliefde, A.R.D.; Clauwaert, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 144 Issue Pages 76-86  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human urine is a valuable resource for nutrient recovery, given its high levels of nitrogen, phosphorus and potassium, but the compositional complexity of urine presents a challenge for an energy-efficient concentration and refinery of nutrients. In this study, a pilot installation combining precipitation, nitrification and electrodialysis (ED), designed for one person equivalent (1.2 L-urine d(-l)), was continuously operated for similar to 7 months. First, NaOH addition yielded calcium and magnesium precipitation, preventing scaling in ED. Second, a moving bed biofilm reactor oxidized organics, preventing downstream biofouling, and yielded complete nitrification on diluted urine (20-40%, i.e. dilution factors 5 and 2.5) at an average loading rate of 215 mg N L-1 d(-1). Batch tests demonstrated the halotolerance of the nitrifying community, with nitrification rates not affected up to an electrical conductivity of 40 mS cm(-1) and gradually decreasing, yet ongoing, activity up to 96 mS cm(-1) at 18% of the maximum rate. Next-generation 16S rRNA gene amplicon sequencing revealed that switching from a synthetic influent to real urine induced a profound shift in microbial community and that the AOB community was dominated by halophilic species closely related to Nitrosomonas aestuarii and Nitrosomonas marina. Third, nitrate, phosphate and potassium in the filtered (0.1 mu m) bioreactor effluent were concentrated by factors 43, 2.6 and 4.6, respectively, with ED. Doubling the urine concentration from 20% to 40% further increased the ED recovery efficiency by similar to 10%. Batch experiments at pH 6, 7 and 8 indicated a more efficient phosphate transport to the concentrate at pH 7. The newly proposed three-stage strategy opens up opportunities for energy- and chemical-efficient nutrient recovery from urine. Precipitation and nitrification enabled the long-term continuous operation of ED on fresh urine requiring minimal maintenance, which has, to the best of our knowledge, never been achieved before. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447569300008 Publication Date 2018-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152907 Serial 8468  
Permanent link to this record
 

 
Author De Vrieze, J.; Colica, G.; Pintucci, C.; Sarli, J.; Pedizzi, C.; Willeghems, G.; Bral, A.; Varga, S.; Prat, D.; Peng, L.; Spiller, M.; Buysse, J.; Colsen, J.; Benito, O.; Carballa, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Resource recovery from pig manure via an integrated approach : a technical and economic assessment for full-scale applications Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 272 Issue Pages 582-593  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Intensive livestock farming cannot be uncoupled from the massive production of manure, requiring adequate management to avoid environmental damage. The high carbon, nitrogen and phosphorus content of pig manure enables targeted resource recovery. Here, fifteen integrated scenarios for recovery of water, nutrients and energy are compared in terms of technical feasibility and economic viability. The recovery of refined nutrients with a higher market value and quality, i.e., (NH4)2SO4 for N and struvite for P, coincided with higher net costs, compared to basic composting. The inclusion of anaerobic digestion promoted nutrient recovery efficiency, and enabled energy recovery through electricity production. Co-digestion of the manure with carbon-rich waste streams increased electricity production, but did not result in lower process costs. Overall, key drivers for the selection of the optimal manure treatment scenario will include the market demand for more refined (vs. separated or concentrated) products, and the need for renewable electricity production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451625700071 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155236 Serial 8476  
Permanent link to this record
 

 
Author Fougerolle, Y.D.; Truchetet, F.; Demonceaux, C.; Gielis, J. pdf  doi
openurl 
  Title A robust evolutionary algorithm for the recovery of rational Gielis curves Type A1 Journal article
  Year 2013 Publication Pattern recognition Abbreviated Journal  
  Volume 46 Issue 8 Pages 2078-2091  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis curves (GC) can represent a wide range of shapes and patterns ranging from star shapes to symmetric and asymmetric polygons, and even self intersecting curves. Such patterns appear in natural objects or phenomena, such as flowers, crystals, pollen structures, animals, or even wave propagation. Gielis curves and surfaces are an extension of Lamé curves and surfaces (superquadrics) which have benefited in the last two decades of extensive researches to retrieve their parameters from various data types, such as range images, 2D and 3D point clouds, etc. Unfortunately, the most efficient techniques for superquadrics recovery, based on deterministic methods, cannot directly be adapted to Gielis curves. Indeed, the different nature of their parameters forbids the use of a unified gradient descent approach, which requires initial pre-processings, such as the symmetry detection, and a reliable pose and scale estimation. Furthermore, even the most recent algorithms in the literature remain extremely sensitive to initialization and often fall into local minima in the presence of large missing data. We present a simple evolutionary algorithm which overcomes most of these issues and unifies all of the required operations into a single though efficient approach. The key ideas in this paper are the replacement of the potential fields used for the cost function (closed form) by the shortest Euclidean distance (SED, iterative approach), the construction of cost functions which minimize the shortest distance as well as the curve length using R-functions, and slight modifications of the evolutionary operators. We show that the proposed cost function based on SED and R-function offers the best compromise in terms of accuracy, robustness to noise, and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317944800002 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107181 Serial 8485  
Permanent link to this record
 

 
Author Huang, W.; Su, X.; Ratkowsky, D.A.; Niklas, K.J.; Gielis, J.; Shi, P. url  doi
openurl 
  Title The scaling relationships of leaf biomass vs. leaf surface area of 12 bamboo species Type A1 Journal article
  Year 2019 Publication Global ecology and conservation Abbreviated Journal  
  Volume 20 Issue Pages e00793  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract There is convincing evidence for a scaling relationship between leaf dry weight (DW) and leaf surface area (A) for broad-leaved plants, and most estimates of the scaling exponent of DW vs. A are greater than unity. However, the scaling relationship of leaf fresh weight (FW) vs. A has been largely neglected. In the present study, we examined whether there is a statistically strong scaling relationship between FW and A and compared the goodness of fit to that of DW vs. A. Between 250 and 520 leaves from each of 12 bamboo species within 2 genera (Phyllostachys and Pleioblastus) were investigated. The reduced major axis regression protocols were used to determine scaling relationships. The fit for the linearized scaling relationship of FW vs. A was compared with that of DW vs. A using the coefficient of determination (i.e., r2). A stronger scaling relationship between FW and A than that between DW and A was observed for each of the 12 bamboo species investigated. Among the 12 species examined, five had significantly smaller scaling exponents of FW vs. A compared to those of DW vs. A; only one species had a scaling exponent of FW vs. A greater than that of DW vs. A. No significant difference between the two scaling exponents was observed for the remaining 6 species. Researchers conducting future studies might be well advised to consider the influence of leaf fresh weight when exploring the scaling relationships of foliar biomass allocation patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000498226800095 Publication Date 2019-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2351-9894; 2351-9894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162954 Serial 8497  
Permanent link to this record
 

 
Author Van Winckel, T.; Vlaeminck, S.E.; Al-Omari, A.; Bachmann, B.; Sturm, B.; Wett, B.; Takács, I.; Bott, C.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification Type A1 Journal article
  Year 2019 Publication Environmental Science: Water Research & Technology Abbreviated Journal  
  Volume 5 Issue 10 Pages 1769-1781  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Deammonification systems are being implemented as cost- and resource-efficient nitrogen removal processes. However, their complexity is a major hurdle towards successful transposition from side- to mainstream application. Merely out-selecting nitrite oxidizing bacteria (NOB) or retaining anammox bacteria (AnAOB) does not guarantee efficient mainstream deammonification. This paper presents for the first time the interactions and synergies between kinetic selection, through management of residual substrates, and physical selection, through separation of solid retention times (SRTs). This allowed the formulation of tangible operational recommendations for successful deammonification. Activity measurements were used to establish retention efficiencies (η) for AnAOB for full-scale cyclones and rotating drum screens installed at a sidestream and mainstream deammonification reactor (Strass, Austria). In the sidestream reactor, using a screen (η = 91%) instead of a cyclone (η = 88%) may increase the capacity by up to 29%. For the mainstream reactor, higher AnAOB retention efficiencies achieved by the screen (η = 72%) compared to the cyclone (η = 42%) induced a prospective increase in capacity by 80–90%. In addition, the switch in combination with bioaugmentation from the sidestream made the process less dependent on nitrite availability, thus aiding in the outselection of NOB. This allowed for a more flexible (intermittent) aeration strategy and a reduced need for tight SRT control for NOB washout. A sensitivity analysis explored expected trends to provide possible operational windows for further calibration. In essence, characterization of the physical selectors at full scale allowed a deeper understanding of operational windows of the process and quantification of capacity, ultimately leading to a more space and energy conservation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487968200013 Publication Date 2019-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162540 Serial 8498  
Permanent link to this record
 

 
Author Kim, E.; Horckmans, L.; Spooren, J.; Vrancken, K.C.; Quaghebeur, M.; Broos, K. pdf  doi
openurl 
  Title Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues Type A1 Journal article
  Year 2017 Publication Hydrometallurgy Abbreviated Journal  
  Volume 169 Issue Pages 372-381  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Several HNO3-based leaching approaches were tested and optimized to selectively recover Pb and other minor metals (Cu, Ni, Zn) from secondary lead smelter residues (i.e., slag and matte). Firstly, the leaching behaviors of Pb and the matrix element Fe were studied at atmospheric pressure in the temperature range 25-70 degrees C. These elements were present in both materials studied as sulfide and oxide phases. For the sulfur-rich matte residue, the Pb leaching increased from 63% to 69% upon increasing the HNO3 concentration from 0.2 M to 0.5 M. However, by adding Fe(III) as an oxidation agent, Pb leaching from the matte amounted to 90% at 25 degrees C. At a higher temperature, Pb leaching was reduced due to PbSO4 precipitation. In this process, Cu, Zn and Ni leaching was insignificant. For the slag residue, HNO3 could not leach Pb (0.03% Pb leached), while Fe leaching was 19.8% due to a galvanic effect. However, Pb leaching of the slag was 82% in the presence of additional Fe(III). Secondly, to enhance leaching of the other base metals (Cu, Zn and Ni) from the matte, roasting followed by water leaching and (microwave assisted or autoclave) pressurized leaching in 0.5 M HNO3 were applied. During roasting, the FeS phase converted to Fe2O3 above 500 degrees C, and PbS and Pb phases were transformed into insoluble PbSO4 above 400 degrees C. Cu, Ni and Zn leaching was drastically enhanced by a roasting step at 600 degrees C followed by leaching with 0.5 M HNO3 at 50 degrees C, or by pressurized HNO3 leaching above 130 degrees C, whereby Pb leaching almost ceased due to PbSO4 precipitation. During the roasting above 600 degrees C, or microwave assisted extraction (MAE) at 160 degrees C for 15 min, FeS was completely converted to iron oxides that can be used as raw material for pig iron production. Based on the results, the methods investigated can be combined as process steps of two possible routes for the selective recovery of valuable metals and the production of a clean source of Fe oxides from the secondary lead smelting residues studied. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401878200045 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144299 Serial 8503  
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Horckmans, L.; Quaghebeur, M.; Vrancken, K.C. pdf  doi
openurl 
  Title Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching Type A1 Journal article
  Year 2015 Publication Hydrometallurgy Abbreviated Journal  
  Volume 158 Issue Pages 139-148  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Selective chromium (Cr) leaching from stainless steel slag (SS slag) by alkali roasting followed by water leaching was investigated. The efficiency of the alkali roasting process for Cr leaching was increased by optimizing the mass ratio of alkaline agents (NaOH, and NaOH-NaNO3) to the slag, roasting temperature and time. At the optimum condition (0.67 mass ratio of NaOH to SS slag, 400 degrees C, 2 h) of NaOH roasting, chromium leaching was around 83%, while the matrix material was dissolved only to a limited extent (Si 8.0%). Mechanical activation of the SS slag prior to roasting reduced the optimum NaOH to SS slag mass ratio to 0.4. The addition of NaNO3 as an oxidant to the NaOH salt increased Cr leaching to 89% after roasting at 400 degrees C for 2 h. The remaining Cr phases in the residue were almost exclusively FeCr alloys. Further chromium dissolution from these alloys is prevented by a passivation layer of Fe oxides as shown by SEM/EDS images. Based on these results, a SS slag recycling process is suggested in which roasting-water leaching followed by water washing to remove Cr yields a residue which has potential for application as a construction material. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366768000019 Publication Date 2015-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130223 Serial 8504  
Permanent link to this record
 

 
Author Nikolova, I.; Janssen, S.; Vrancken, K.; Vos, P.; Mishra, V.; Berghmans, P. pdf  doi
openurl 
  Title Size resolved ultrafine particles emission model : a continues size distribution approach Type A1 Journal article
  Year 2011 Publication The science of the total environment Abbreviated Journal  
  Volume 409 Issue 18 Pages 3492-3499  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E + 14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.040.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293260100026 Publication Date 2011-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:91949 Serial 8546  
Permanent link to this record
 

 
Author Caratelli, D.; Gielis, J.; Tavkhelidze, I.; Ricci, P.E. url  doi
openurl 
  Title Spherical harmonic solution of the Robin problem for the Helmholtz equation in a supershaped shell Type A1 Journal article
  Year 2013 Publication Applied mathematics Abbreviated Journal  
  Volume 4 Issue 1a Pages 263-270  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called superformula introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2013-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2152-7385 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107177 Serial 8576  
Permanent link to this record
 

 
Author Agrawal, S.; Seuntjens, D.; De Cocker, P.; Lackner, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights Type A1 Journal article
  Year 2018 Publication Current opinion in biotechnology Abbreviated Journal  
  Volume 50 Issue Pages 214-221  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Twenty years ago, mainstream partial nitritation/anammox (PN/A) was conceptually proposed as pivotal for a more sustainable treatment of municipal wastewater. Its economic potential spurred research, yet practice awaits a comprehensive recipe for microbial resource management. Implementing mainstream PN/A requires transferable and operable ways to steer microbial competition as to meet discharge requirements on a year-round basis at satisfactory conversion rates. In essence, the competition for nitrogen, organic carbon and oxygen is grouped into ON/OFF (suppression/promotion) and IN/OUT (wash-out/retention and seeding) strategies, selecting for desirable conversions and microbes. Some insights need mechanistic understanding, while empirical observations suffice elsewhere. The provided methodological R&D framework integrates insights in engineering, microbiome and modeling. Such synergism should catalyze the implementation of energy-positive sewage treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430903400028 Publication Date 2018-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149977 Serial 8616  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 257 Issue Pages 266-273  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430401100033 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149975 Serial 8619  
Permanent link to this record
 

 
Author Huang, W.; Li, Y.; Niklas, K.J.; Gielis, J.; Ding, Y.; Cao, L.; Shi, P. url  doi
openurl 
  Title A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo Type A1 Journal article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 12 Pages 2073  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many cross-sectional shapes of plants have been found to approximate a superellipse rather than an ellipse. Square bamboos, belonging to the genus Chimonobambusa (Poaceae), are a group of plants with round-edged square-like culm cross sections. The initial application of superellipses to model these culm cross sections has focused on Chimonobambusa quadrangularis (Franceschi) Makino. However, there is a need for large scale empirical data to confirm this hypothesis. In this study, approximately 750 cross sections from 30 culms of C. utilis were scanned to obtain cross-sectional boundary coordinates. A superellipse exhibits a centrosymmetry, but in nature the cross sections of culms usually deviate from a standard circle, ellipse, or superellipse because of the influences of the environment and terrain, resulting in different bending and torsion forces during growth. Thus, more natural cross-sectional shapes appear to have the form of a deformed superellipse. The superellipse equation with a deformation parameter (SEDP) was used to fit boundary data. We find that the cross-sectional shapes (including outer and inner rings) of C. utilis can be well described by SEDP. The adjusted root-mean-square error of SEDP is smaller than that of the superellipse equation without a deformation parameter. A major finding is that the cross-sectional shapes can be divided into two types of superellipse curves: hyperellipses and hypoellipses, even for cross sections from the same culm. There are two proportional relationships between ring area and the product of ring length and width for both the outer and inner rings. The proportionality coefficients are significantly different, as a consequence of the two different superellipse types (i.e., hyperellipses and hypoellipses). The difference in the proportionality coefficients between hyperellipses and hypoellipses for outer rings is greater than that for inner rings. This work informs our understanding and quantifying of the longitudinal deformation of plant stems for future studies to assess the influences of the environment on stem development. This work is also informative for understanding the deviation of natural shapes from a strict rotational symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602546300001 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.457  
  Call Number UA @ admin @ c:irua:174472 Serial 8622  
Permanent link to this record
 

 
Author Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Pümpel, T.; Shaw, A.; Chandran, K.; Murthy, S.; De Clippeleir, H. pdf  url
doi  openurl
  Title Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 143 Issue Pages 270-281  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Treatment of sewage sludge with a thermal hydrolysis process (THP) followed by anaerobic digestion (AD) enables to boost biogas production and minimize residual sludge volumes. However, the reject water can cause inhibition to aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB), the two key microbial groups involved in the deammonification process. Firstly, a detailed investigation elucidated the impact of different organic fractions present in THP-AD return liquor on AerAOB and AnAOB activity. For AnAOB, soluble compounds linked to THP conditions and AD performance caused the main inhibition. Direct inhibition by dissolved organics was also observed for AerAOB, but could be overcome by treating the filtrate with extended aerobic or anaerobic incubation or with activated carbon. AerAOB additionally suffered from particulate and colloidal organics limiting the diffusion of substrates. This was resolved by improving the dewatering process through an optimized flocculant polymer dose and/or addition of coagulant polymer to better capture the large colloidal fraction, especially in case of unstable AD performance. Secondly, a new inhibition model for AerAOB included diffusion-limiting compounds based on the porter-equation, and achieved the best fit with the experimental data, highlighting that AerAOB were highly sensitive to large colloids. Overall, this paper for the first time provides separate identification of organic fractions within THP-AD filtrate causing differential types of inhibition. Moreover, it highlights the combined effect of the performance of THP, AD and dewatering on the downstream autotrophic nitrogen removal kinetics. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443664000027 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152911 Serial 8623  
Permanent link to this record
 

 
Author Seuntjens, D.; Van Tendeloo, M.; Chatzigiannidou, I.; Carvajal-Arroyo, J.M.; Vandendriessche, S.; Vlaeminck, S.E.; Boon, N. pdf  doi
openurl 
  Title Synergistic exposure of return-sludge to anaerobic starvation, sulfide and free ammonia to suppress nitrite oxidizing bacteria Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 15 Pages 8725-8732  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A key step toward energy-positive sewage treatment is the development of mainstream partial nitritation/anammox, a nitrogen removal technology where aerobic ammonium-oxidizing bacteria (AerAOB) are desired, while nitrite-oxidizing bacteria (NOB) are not. To suppress NOB, a novel return-sludge treatment was investigated. Single and combined effects of sulfide (0-600 mg S L-1), anaerobic starvation (0-8 days), and a free ammonia (FA) shock (30 mg FA-N L-1 for 1 h) were tested for immediate effects and long-term recovery. AerAOB and NOB were inhibited immediately and proportionally by sulfide, with AerAOB better coping with the inhibition, while the short FA shock and anaerobic starvation had minor effects. Combinatory effects inhibited AerAOB and NOB more strongly. A combined treatment of sulfide (150 mg S L-1), 2 days of anaerobic starvation, and FA shock (30 mg FA-N L-1) inhibited AerAOB 14% more strongly compared to sulfide addition alone, while the AerAOB/NOB activity ratio remained constant. Despite no positive change being observed in the immediate-stress response, AerAOB recovered much faster than NOB, with a nitrite accumulation ratio (effluent nitrite on nitrite + nitrate) peak of 50% after 12 days. Studying long-term recovery is therefore crucial for design of an optimal NOB-suppression treatment, while applying combined stressors regularly may lead toward practical implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441477600073 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152909 Serial 8635  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: