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Abstract: Many cross-sectional shapes of plants have been found to approximate a superellipse rather
than an ellipse. Square bamboos, belonging to the genus Chimonobambusa (Poaceae), are a group of
plants with round-edged square-like culm cross sections. The initial application of superellipses to
model these culm cross sections has focused on Chimonobambusa quadrangularis (Franceschi) Makino.
However, there is a need for large scale empirical data to confirm this hypothesis. In this study,
approximately 750 cross sections from 30 culms of C. utilis were scanned to obtain cross-sectional
boundary coordinates. A superellipse exhibits a centrosymmetry, but in nature the cross sections
of culms usually deviate from a standard circle, ellipse, or superellipse because of the influences
of the environment and terrain, resulting in different bending and torsion forces during growth.
Thus, more natural cross-sectional shapes appear to have the form of a deformed superellipse.
The superellipse equation with a deformation parameter (SEDP) was used to fit boundary data.
We find that the cross-sectional shapes (including outer and inner rings) of C. utilis can be well described
by SEDP. The adjusted root-mean-square error of SEDP is smaller than that of the superellipse equation
without a deformation parameter. A major finding is that the cross-sectional shapes can be divided
into two types of superellipse curves: hyperellipses and hypoellipses, even for cross sections from
the same culm. There are two proportional relationships between ring area and the product of ring
length and width for both the outer and inner rings. The proportionality coefficients are significantly
different, as a consequence of the two different superellipse types (i.e., hyperellipses and hypoellipses).
The difference in the proportionality coefficients between hyperellipses and hypoellipses for outer
rings is greater than that for inner rings. This work informs our understanding and quantifying of the
longitudinal deformation of plant stems for future studies to assess the influences of the environment
on stem development. This work is also informative for understanding the deviation of natural
shapes from a strict rotational symmetry.

Keywords: bimodal distribution; centrosymmetry; Chimonobambusa utilis; hyperellipses; hypoellipses

1. Introduction

The superellipse equation is a generalized form of the equation of an ellipse. It can generate the
shapes of diamonds, ellipses, rectangles, and their transition shapes. The first systematic study of
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these curves was done by Gabriel Lamé to describe crystal shapes [1]. The superellipse is defined
analytically by the formula

|x/α|n +
∣∣∣y/β

∣∣∣n = 1, (1)

where x and y are the Cartesian coordinates; α and β are semidiameters of the superellipse; and n is an
arbitrary positive number. For n = 1, the superellipse equation produces a diamond (or an inscribed
square when α = β). For n = 2, the equation gives an ellipse (or a circle when α = β). For n < 2,
the shapes are called hypoellipses, and, when n > 2, hyperellipses result [2,3] (see Figure 1 for details).

A wide variety of naturally occurring shapes can be approximated by the superellipse equation [2],
including tree rings [4]. However, the original botanical application of the superellipse equation was to
model the culm cross sections of the “square culm” bamboo Chimonobambusa quadrangularis (Franceschi)
Makino [5]. Bamboos (Bambusoideae: Poaceae) are a group of important plants in subtropical and
tropical forests, which are significant ecologically and economically [6]. Like most grasses, their culms
are cylindrical in cross sections, except for square bamboos of the genus Chimonobambusa. Although
C. quadrangularis is the best-known square bamboo, there are many other species of Chimonobambusa
with square culm cross sections. In the monograph on Chimonobambusa [7], 33 species were described,
divided into three sections. Half of the species (17) are included in the Section Oreocalamus, and most
of these have bamboo culms with square cross sections at the base or from the base up to central
parts of the culms. The Flora of China (Volume 22, Poaceae) lists 34 species in China based on the
study of Wen [7], with some new species and one renaming (C. linearifolia is now designated as
C. angustifolia) [8]. Species of Chimonobambusa Sect. Oreocalamus are found between 1000 and 2000 m of
altitude with average rainfall of 1000 to 1400 mm and average temperatures of 8–16 ◦C with extreme
low temperatures of −14 ◦C. The name chimono derives from the Greek word for winter. Indeed,
the shoots of these species develop in autumn, typically from September to December, in contrast to all
other temperate bamboos with new shoots sprouting in spring to full height and with lignification
throughout the season. Further, the elongation of square bamboos can arrest due to the cold and start
again in spring to attain their full height. Hence, the square shape of culms may provide an effective
resistance against bending, torsion, and buckling in the absence of lignification.

In this study, we use C. utilis (Keng) Keng, a medium to large bamboo with culms 5–10 m tall and
3–4 cm in diameter. This species has quadrangular cross sections in the lower and middle parts of
culms, and terete cylindrical cross sections in the upper part of culms. This species is distributed over
a wide area in Sichuan, Guizhou and Yunnan provinces in China at altitudes of 1400 to 2600 m [7].
Its bamboo shoots appear in September.

The cross sections of the culms of C. utilis manifest a large variation in shape and deviate from the
classic superellipse (Figure 2). No relevant studies of its shape and variation have been carried out
previously. It is important to examine whether the cross sections of culms conform to the superellipse
equation, which would be helpful to describe the cross-sectional shapes of other square bamboos.
In addition, some cross sections apparently exhibit a degree of deformation because of the influences
of the environment and terrain. Thus, it is necessary to consider such deformation in simulating their
shapes. In the present study, we introduced a deformation parameter w in Equation (1) and used the
images of ca. 750 cross sections of C. utilis to test whether this equation can fit the square bamboo culm
data well.
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Figure 2. Six examples of the culm cross sections of C. utilis (Keng) Keng. The samples (A–F)
were sampled from the same site (Tongzi County, Guizhou Province, P.R. China) in September of
2020. The aboveground heights of sections (A–F) were 26.50, 40.85, 30.85, 20.00, 36.60 and 24.45 cm,
respectively.

2. Materials and Methods

2.1. Cross-Section Sampling and Preparation

Thirty bamboo culms of C. utilis from the first to the 25th aboveground internode were sampled
from a pure and artificial stand of C. utilis in Tongzi County, Guizhou Province of China (106.75 ◦E,
28.30 ◦N; 1612 m above sea level) on 20th September 2020. One cross section was removed from the
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middle of each internode. A Jingsida angle grinder (type: 100#—1; load peak: 1600 W; Wuyizuohang
Industry & Trade Co., Ltd, Jinhua City, Zhejiang Province, China) with a 100 grit grinding wheel
was used to coarsely smooth both surfaces of each cross section. Subsequent grinding with 400 grit,
2500 grit, and 5000 grit sandpaper (280 × 230 mm) in sequence was used to polish the surfaces of each
section. The mean thickness of the sections was 0.92 cm (±0.17 cm standard error).

2.2. Image Processing and Boundary Data Acquisition

All cross sections were scanned at 2000 dpi using an Epson scanner (V550, Epson Indonesia, Batam,
Indonesia). The outer and inner rings of the cross sections were saved as black-white bitmap images
separately using Photoshop (CS2, Adobe, San Jose, CA, USA). There were, in total, 1436 rings (=30 stalks
× 25 cross sections/stalk × 2 rings/cross section − 64 rings damaged during cutting). The boundary
coordinate data of the rings were extracted using the Matlab procedure developed by Shi et al. [9].

2.3. Fitting the Superellipse Equation and the Introduction of a Deformation Parameter

In the polar coordinate system, Equation (1) can be rewritten as:

r = α(|cosϕ|n + |sinϕ/k|n)−1/n, (2)

where r represents the polar radius (where x = r cosϕ and y = r sinϕ); ϕ is the polar angle; k = β/α.
In order to fit the data, the translation of the pole of the coordination system and the change in the
angle between the straight line where semidiameter α lies and the x-axis need to be considered because
scanned images of cross sections generally do not fully overlap with a standard superellipse as shown
in Figure 1. Thus, the additional parameters x0, y0 and θ need to be fitted, where (x0, y0) is the
translational pole and θ is the angle between the straight line where semidiameter α lies and the x-axis.
For a standard superellipse, the pole’s coordinates are (0, 0), and θ = 0.

In order to consider a “deformed” superellipse, we introduced a matrix M:

M =

(
1 w
0 1

)
, (3)

where w denotes the deformation parameter. Let N represent the matrix that preserves the x- and
y-coordinates of a superellipse curve generated by Equation (2):

N =

(
x1 x2 x3 . . . xq

y1 y2 y3 . . . yq

)
, (4)

where q is the number of data points forming a superellipse curve in (0, 2π). Accordingly, a deformed
superellipse can be obtained by multiplying M by N:

G = MN, (5)

where matrix G saves the x- and y-coordinates of the deformed superellipse curve. In the polar
coordinate system, the deformed superellipse is:

r′ =
α sinϕ

(
|cosϕ|n +

∣∣∣ sinϕ
k

∣∣∣n)−1/n

sin
[
arctan

(
sinϕ

cosϕ+w sinϕ

)] , (6)

where r’ represents the polar radius of the deformed superellipse. Note that ϕ designates the polar
angle of the undeformed superellipse which provides a link between the deformed and undeformed
superellipses. Equation (7) is a formal mathematical description of a deformed superellipse in the
polar coordinate system of (r’, ϕ’), where ϕ’ represents the polar angle of the deformed superellipse.
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r′ = α
(∣∣∣cosϕ′ −w sinϕ′

∣∣∣n + ∣∣∣sinϕ′/k
∣∣∣n)−1/n

. (7)

Appendix A provides the proof of Equations (6) and (7). Figure 3 illustrates four deformation
cases. In fitting empirical data, k was not confined a priori to be smaller than 1, i.e., the semidiameter α
can be greater or smaller than the semidiameter β. We referred to α as the major semiaxis when k < 1,
and β as the major semiaxis when k > 1. By observing the estimate of k, we can deduce the deformation
of the major semiaxis (k < 1) or in a minor semiaxis (k > 1).

Symmetry 2020, 12, x FOR PEER REVIEW  24 of 102 

 

  caGGNaaabaGaam4AaaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaad6 

  gaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTmaalyaabaGa 

  aGymaaqaaiaad6gaaaaaaaaa@68E7@ 

  </annotation> 

 </semantics> 

</math> 

<!-- MathType@End@5@5@ --> 

. 

Appendix A provides the proof of Equations (6) and (7). Figure 3 illustrates four deformation 

cases. In fitting empirical data, k was not confined a priori to be smaller than 1, i.e., the 

semidiameter α can be greater or smaller than the semidiameter β. We referred to α as the major 

semiaxis when k < 1, and β as the major semiaxis when k > 1. By observing the estimate of k, we 

can deduce the deformation of the major semiaxis (k < 1) or in a minor semiaxis (k > 1). 

 

Figure 3. Four examples of the deformation in superellipses. (A) n = 1.7; α = 1; k = 0.85; w = −0.2 

and 0.2; (B) n = 2.5; α = 1; k = 0.85; w = −0.2 and 0.2. Panel (A) exhibits two deformed 

hypoellipses, and panel (B) exhibits two deformed hyperellipses. The sign of w does not affect 

the degree of deformation; it merely designates the direction of deformation. 

Assuming that the observed polar radii from a scanned image are <!-- 

MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ -

-> 

<math> 

Figure 3. Four examples of the deformation in superellipses. (A) n = 1.7; α = 1; k = 0.85; w =−0.2 and 0.2;
(B) n = 2.5; α = 1; k = 0.85; w = −0.2 and 0.2. Panel (A) exhibits two deformed hypoellipses, and panel
(B) exhibits two deformed hyperellipses. The sign of w does not affect the degree of deformation; it
merely designates the direction of deformation.

Assuming that the observed polar radii from a scanned image are ri, where i ranges from 1 to
q, and predicted polar radii are r̂i, we minimized the residual sum of squares (RSS) between the
observed and predicted polar radii to estimate the parameters of the model using the Nelder—Mead
optimization algorithm [10]. The R script used to perform parametric estimations is provided in the
online Text S1 as Supplementary Materials. The script can operate in R (version ≥ 3.6.1) [11].

2.4. Analysis of the Fitted Results

To compare the fit between the superellipse equation with a deformation parameter w (SEDP) and
Equation (1) without a deformation parameter (SE), we calculated adjusted root-mean-square errors
(RMSEadj) [12,13]:

RMSEadj =

√
RSS/q
√

A/π
, (8)

where A represents the observed ring area. We found that the adjusted RMSEs for two equations
(SEDP and SE) both exhibited a right-skewed distribution to a degree. For a right-skewed distribution,
a log-transformation was found to reduce the skewness and normalize the data [14]. Thus, we used the
Tukey’s honestly significant difference (HSD) test [15] to test whether there was a significant difference
between the logarithm of the adjusted RMSE for SEDP and that for SE.

The extent of the deviation from a standard superellipse also determines the need to introduce
the deformation parameter w to SE. If the deformation is comparatively minor, the parameter can be
neglected. However, if the w value is large, it is necessary to use this parameter. The deformation
parameter w correlates with the values of n and k, but the direction of deformation does not change
the absolute value of w (Figure 3). Thus, we could identify four superellipse types (S1: n ≥ 2 and
k ≥ 1; S2: n ≥ 2 and k < 1; S3: n < 2 and k ≥ 1; S4: n < 2 and k < 1) for the outer and inner rings,
respectively. There were a total of eight groups (i.e., four superellipse types and two ring types).
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However, the absolute values of w in the different groups all exhibited extremely right-skewed
distributions that log-transformation could not approximate as symmetrical bell-shaped distributions.
Consequently, we used the following method to normalize the |w| values:

wnorm = exp
(
logc

∣∣∣w∣∣∣), (9)

where wnorm is the normalized |w| and c is a base that can render all or most groups of the wnorm values
to pass the test of normality. To find this base, we set c to range between 1.1 to 200 in 0.1 increments to
calculate the p values of the Shapiro—Wilk test of normality [16]. We selected the c value such that all
or most groups of the wnorm values passed the test of normality. The Tukey’s HSD test was then used
to test whether there were significant differences in the normalized |w| values among the eight groups
of the combinations of n and k for the outer and inner rings.

The presence of two types of superellipses (i.e., hypoellipses and hyperellipses) in the outer or
the inner rings indicated a bimodal distribution of the estimated n values for the outer or the inner
rings. We used a proportional function to reflect the relationship between the scanned ring area (A)
and the product of the scanned length (L ≈ 2α) and width (W ≈ 2β). This protocol has been shown to
be valid in describing the relationship of leaf surface area and the product of leaf length and width for
many broad-leaved plant species [17,18]. If the n values exhibit a bimodal distribution, we assumed
that it may result in two different proportionality coefficients considering that the area formula of a
superellipse is intimately associated with n and αβ [19]:

A =
Γ(1 + 1/n)41−1/n√παβ

Γ(0.5 + 1/n)
, (10)

where Γ is the gamma function. It is apparent that A is approximately proportional to LW (≈ 4αβ)
with a proportionality coefficient, 4−1/n√πΓ(1 + 1/n)/Γ(0.5 + 1/n), if n is a constant. If n exhibited a
bimodal distribution, the data were divided into two groups based on the fitted values of n (i.e., n ≥ 2
and n < 2). We used the arithmetic mean n for n ≥ 2 and that for n < 2 to approximately calculate the
foregoing proportionality coefficients. Let us plot the observations of ln(A) against those of ln(LW).
For a bimodal distribution of n, there will be two parallel straight lines with the same slope 1 but
with two different intercepts. The estimate of the intercept based on the mean estimate of n is then
as follows:

â = exp
[
4−1/n√πΓ(1 + 1/n)/Γ(0.5 + 1/n)

]
, (11)

where â is the estimate of the intercept, and n is the mean estimate of n. If the estimated intercept from
Equation (11) is equal or approximate to the estimated intercept based on the linear regression, it can
further demonstrate the validity of the superellipse equation in describing the cross-sectional shapes of
C. utilis.

3. Results

The superellipse equation with the deformation parameter (SEDP) adequately described the
shapes of all 1436 C. utilis culm cross sections. The adjusted root-mean-square errors (RMSEadj) ranged
from 0.0026 to 0.0299 with a median of 0.0078 (Figure 4A; Table S1). All RMSE values were less than 5%
of the effective radius (=

√
A/π). A comparison of the normalized data showed that SEDP had a smaller

normalized RMSEadj value than the superellipse equation without the deformation parameter (SE) for
each cross section (Figure 4B). On average, the reduction in RMSEadj using SEDP achieved 18.8% of the
RMSEadj of SE, indicating that the introduction of the deformation parameter w significantly improved
the goodness of fit. Figure 5 shows the fitted results for the six cross-sectional examples in Figure 2 for
the outer and inner rings. The fitted results for other cross sections are provided in Table S1.

Of the eight groups of the normalized |w| values (four superellipse types for both the outer and
inner rings), there were seven groups that passed the test of normality. The exception was the first
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group (i.e., the group of n ≥ 2 and k ≥ 1 in the outer rings). There were no significant differences in the
normalized deformation parameters among the S2, S3 and S4 groups for either the outer or the inner
rings. The results showed that the deformations in hyperellipses exhibited a significant difference
between the major axis and the minor axis, whereas the deformations in hypoellipses did not (Figure 6).

A bimodal distribution of n values was found for both outer and inner rings (Figure 7A,B).
The distance between the two peaks in the bimodal distribution of outer rings was greater than that
of inner rings. There was a significant difference in n between the two types of rings (Figure 7C).
The bimodal distribution reflects a separation in the proportional relationship between the ring area and
the product of ring length and width, as shown in Figure 7D,E. The intercepts (=exp[proportionality
coefficients]) emerging from Equation (11) were found to be approximate to the estimated intercepts
using linear regressions (Table 1). This further confirmed the validity of the superellipse equation in
describing the cross-sectional shapes of C. utilis.

Table 1. Comparison between the theoretical intercept based on the superellipse area formula and the
estimated intercept based on the linear regression.

Ring Type Data Range Theoretical Intercept 1 Estimated Intercept LCI UCI RMSE

Outer n ≥ 2 0.8421 0.8246 0.8235 0.8257 0.0134
Outer n < 2 0.7282 0.7291 0.7279 0.7303 0.0158
Inner n ≥ 2 0.8071 0.7994 0.7986 0.8001 0.0092
Inner n < 2 0.7637 0.7600 0.7593 0.7607 0.0087

1 The theoretical intercept represents the value derived from the superellipse area formula (Equation (11));
the estimated intercept represents the value based on the linear regression; LCI and UCI represent the lower
and upper bounds of the 95% confidence intervals of the estimated intercept; and RMSE represents the
root-mean-square error of the linear regression.
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Figure 4. (A) The frequency distribution of the adjusted root-mean-square errors using the superellipse
equation with a deformation parameter (SEDP) and (B) a comparison in the log-transformed RMSEadj

between the superellipse equation without a deformation parameter (SE) and with a deformation
parameter (SEDP). In panel B, a and b were used to show the significance of the difference in the mean
log-transformed RMSEadj between the two equations based on the Tukey’s HSD test. Group SE has a
larger mean log-transformed RMSEadj than group SEDP.
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Figure 5. Fitted curves for the six actual cross-sectional examples of C. utilis using the superellipse
equation with a deformation parameter. The gray curves are the actual outer and inner rings; the red
curves are fitted curves. The panels (A–F) correspond to the actual scanned images in Figure 2.
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Figure 6. Boxplot for the normalized deformation parameters for the four superellipse types (S1: n ≥ 2
and k ≥ 1; S2: n ≥ 2 and k < 1; S3: n < 2 and k ≥ 1; S4: n < 2 and k < 1) for outer and inner rings. The dark
solids in the box represent the median of data; the red snowflakes represent means. The letters of
a, b, c and d in the upper whiskers denote the significance of the difference in the mean normalized
deformation parameters between any two groups. The same letter indicates an insignificant difference
between the two groups. Here, a represents the group with the largest mean normalized deformation
parameter, and d represents the group with the smallest mean normalized deformation parameter.
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Figure 7. Bimodal distribution of the n values and their influence on the proportional relationship
between the ring area and the product of the ring length and width. (A,B) The frequencies of the n
values in outer and inner rings, and (C) their comparison using a boxplot. There was a significant
difference in the mean n value between the outer and inner rings, the mean n of the group marked by a
is significantly larger than that marked by b. (D) For the outer rings, the data apparently exhibited two
separate linear trends according to the n values, and (E) the similar separation in the data occurred for
the inner rings. However, the extent of the data separation for outer rings is larger than that for inner
rings (D vs. E). The red small open circles are observations; the straight lines were not fitted by linear
regressions, and they were derived from the superellipse area formula (i.e., Equation (11)). The slopes
of the four straight lines in (D,E) are both equal to 1.
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4. Discussion

When referring to square bamboos in 1885, Thiselton Dyer [20] wrote “The cylindrical form
of the stems of grasses is so universal a feature in the family that the reports of the existence in
China and Japan of a bamboo with manifestly four-angled stems has generally been considered as a
myth, or, at any rate, as founded on some diseases or abnormal condition of a species having stems,
when properly developed, circular in section. Of the existence of such a bamboo there cannot, however,
now be any kind of doubt”. One century later, these shapes are now shown to be described by a
single, highly versatile equation, the deformed superellipse, which is obtained by using a simplified

linear transformation matrix M =

(
1 w
0 1

)
to multiply the Cartesian coordinates of the superellipse.

It is noteworthy that if the more general matrix is used, M̃ =

(
w1 w2

w3 w4

)
, the deformed superellipse

curve from M̃N becomes significantly more flexible. However, the addition of more parameters
unnecessarily increases the complexity of the deformed superellipse and generally fails to obtain a
global optimization for parametric estimation. The introduction of a single additional parameter w to
SE results in a reduction of the mean by 18.8% in the adjusted RMSE of SE. All RMSE values of the
1436 culm cross sections examined in this study were smaller than 5% of the effective radius (=

√
A/π).

This indicates that M is more than sufficient to describe the deviation of actual cross sections of C.
utilis from a standard superellipse. To add additional parameters appears to be unnecessary and
can decrease the close-to-linear performance of nonlinear regression [14]. However, for other objects,
whether it is necessary to add additional deformation parameters requires further study.

The present study can be extended to consider more complex models. Gielis [2] proposed a
superformula that can combine SE as a special case:

r =
[∣∣∣∣∣ 1α cos

(m
4
ϕ

)∣∣∣∣∣n2

+

∣∣∣∣∣1β sin
(m

4
ϕ

)∣∣∣∣∣n3
]−1/n1

, (12)

where n1, n2, n3 are constants to be fitted, and m should be a positive integer that controls the number
of angles of the supercurve (which was generated by the superformula). This was used to study the
mechanical properties of petioles of Philodendron melinonii Brongn. ex Regel and Rheum rhabarbarum
L. [21,22], and the current study provides a simpler model for the study of square bamboos. Equation
(12) can be rewritten as:

r = h
[∣∣∣∣∣cos

(m
4
ϕ

)∣∣∣∣∣n2

+
1
k′

∣∣∣∣∣sin
(m

4
ϕ

)∣∣∣∣∣n3
]g

, (13)

where h = αn2/n1 , k′ = βn3/αn2 and g = −1/n1. This rewriting can be helpful in fitting actual data
by decreasing the parameter—effects curvature of the nonlinear regression to render the parametric
estimation more robust [14,23]. Let us define an elemental radius re as:

re =

∣∣∣∣∣cos
(m

4
ϕ

)∣∣∣∣∣n2

+
1
k′

∣∣∣∣∣sin
(m

4
ϕ

)∣∣∣∣∣n3

. (14)

Equation (13) can be regarded as a power—law relationship between r and re, which can be
described as a linear relationship on a log-log plot. Equation (13) has been demonstrated to be valid
in describing many natural shapes including the leaves of many plants [3,9,24–26], and the seeds of
Ginkgo biloba L. [23]. However, it was found to be invalid in describing several shapes of starfish.
Thus, Shi et al. [13] put forward another superformula based on Equation (13) by changing the linear
relationship between r and re on a log-log plot to a hyperbolic relationship on a log-log plot, i.e.,

r = exp
[
γ0 +

1
γ1 + γ2 ln(re)

]
, (15)
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where γ0, γ1 and γ2 are constants to be fitted. Equation (15) was found to fit the shapes of eight actual
starfish specimens well [13]. In actual data fit, Equations (13) and (15) appear to be more valid for
the symmetrical shapes including bilateral symmetry and centrosymmetry than those asymmetrical
shapes. For instance, some leaves tend to exhibit a degree of bilateral asymmetry because of the
influence of environments and the aboveground architecture of plants [27–29]. The deviation from a
standard symmetrical shape largely limits the applicability of a supercurve to describe natural shapes.
The deviation in nature is usually not anisotropic, and it tends to be a linear transformation from
a standard symmetrical shape (e.g., the leaf shape of Sapium sebiferum (L.) Roxb.), which has been
earlier noted by Thompson [30]. However, such a linear transformation in natural shapes has been
little studied after Thompson. The present study demonstrated that the deformation in cross-sectional
shapes of C. utilis stalks could be quantified by introducing a parameter w as a linear transformation
from a standard centrosymmetrical superellipse.

5. Conclusions

Using cross sections through the culms of C. utilis, we demonstrate that the superellipse equation
with a deformation parameter (SEDP) is empirically valid in describing the shapes of the outer and
inner rings of culm cross sections. The SEDP has a smaller adjusted root-mean-square error (RMSE)
than the superellipse equation without a deformation parameter (SE) for each of the inner and outer
1436 rings from ca. 750 cross sections, indicating that SEDP provides more flexibility in fitting the
data compared to SE. The adjusted RMSEs using the SEDP for the 1436 rings range between 0.0026
and 0.0299 with a median of 0.0078, which are all smaller than 0.03. Thus, all RMSEs do not exceed
3% of the effective radius (that is equal to the square root of the quotient of the ring area and π).
In comparison with the adjusted RMSE using SE, the introduction of the deformation parameter
results in the reduction of the adjusted RMSE by 18.8% on average. This confirmed the necessity of
introducing the deformation parameter to SE and showed the reasonability of the linear transformation
hypothesis for explaining the deformation in cross-sectional shapes. For outer and inner rings, there
were two types of superellipses: hyperellipses (n > 2) and hypoellipses (n < 2), which were reflected by
a bimodal distribution of the estimated n values. However, the distance between two peaks in the
bimodal distribution of n for outer rings was greater than that for inner rings. The bimodal distribution
of n was also reflected by two separate proportional relationships between ring area and the product
of ring length and width. On a log-log plot, there were two groups of separate data that could be
fitted by two straight lines with the same slope 1 but different intercepts. The bimodal distribution
of n showed that the cross-sectional shapes of C. utilis culms tended to change towards two types of
superellipses with n = 2.47 and 1.68 for outer rings. We used the two values to calculate the theoretical
proportionality coefficients based on the superellipse area formula, and found that the two values were
approximate to the estimated slopes using linear regressions. The current study provided the evidence
of the existence of natural superellipses, and confirmed that the deviation from a centrosymmetry in
some natural shapes could be accounted for by the linear transformation of the boundary coordinates
of superellipses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/12/2073/s1,
Text S1. R script for estimating the parameters of the superellipse equation with a deformation parameter, Table S1.
Fitted results using the superellipse equation with a deformation parameter to the cross-sectional shapes of
Chimonobambusa utilis.
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Appendix A. Proof of the Superellipse Equation with the Deformation Parameter w

Let x and y represent the coordinates of an arbitrary point on a standard superellipse curve.
Then the coordinates of this point on the deformed superellipse curve can be expressed as:

M·
(

x
y

)
=

(
1 w
0 1

)
·

(
x
y

)
=

(
x + wy

y

)
. (A1)

In the polar coordinate system, x = r cosϕ and y = r sinϕ, where r represents the polar radius
at ϕ (see Equation (2)). Let x’ and y’ represent the new coordinates of the point on the deformed
superellipse curve. We have: {

x′ = x + wy = r cosϕ+ wr sinϕ
y′ = y = r sinϕ

. (A2)

Let ϕ’ represent the polar angle of the new coordinates of the point, and there is:

ϕ′ = arctan
(

y′

x′

)
. (A3)

Let r’ represent the polar radius of the deformed superellipse. Because y′ = r′ sinϕ′, we have:

r′ =
y′

sinϕ′ =
y′

sin
[
arctan

(
y′

x′

)] = y
sin

[
arctan

( y
x+wy

)]
= r sinϕ

sin[arctan( r sinϕ
r cosϕ+wr sinϕ )]

= r sinϕ

sin[arctan( sinϕ
cosϕ+w sinϕ )]

(A4)

According to Equation (2), r = α(|cosϕ|n + |sinϕ/k|n)−1/n, we can derive the superellipse
equation with the deformation parameter w in the polar coordinate system:

r′ =
α sinϕ

(
|cosϕ|n +

∣∣∣ sinϕ
k

∣∣∣n)−1/n

sin
[
arctan

(
sinϕ

cosϕ+w sinϕ

)] . (A5)

If we replace r in Equation (A4) with Equation (1) instead of Equation (2), we have:

r′ =
sinϕ

(∣∣∣ cosϕ
α

∣∣∣n + ∣∣∣∣ sinϕ
β

∣∣∣∣n)−1/n

sin
[
arctan

(
sinϕ

cosϕ+w sinϕ

)] . (A6)

In the polar coordinate system of (r’, ϕ’), we see that:

tanϕ′ =
y′

x′
=

y
x + wy

⇒ y =
tanϕ′x

1−w tanϕ′
. (A7)

After replacing y in Equation (A7) with y = y′ = r′ sinϕ′, we have:

r′ sinϕ′ =
tanϕ′x

1−w tanϕ′
⇒ x = r′(cosϕ′ −w sinϕ′). (A8)
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Replacing x and y in Equation (1) with Equation (A8) and y = y′ = r′ sinϕ′, yields the formula:

r′ =
(∣∣∣∣∣cosϕ′ −w sinϕ′

α

∣∣∣∣∣n + ∣∣∣∣∣sinϕ′

β

∣∣∣∣∣n)−1/n

. (A9)

Because k = β/α, Equation (A9) can be rewritten as:

r′ = α
(∣∣∣cosϕ′ −w sinϕ′

∣∣∣n + ∣∣∣sinϕ′/k
∣∣∣n)−1/n

. (A10)
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