toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Caratelli, D.; Gielis, J.; Tavkhelidze, I.; Ricci, P.E. url  doi
openurl 
  Title Spherical harmonic solution of the Robin problem for the Helmholtz equation in a supershaped shell Type A1 Journal article
  Year (down) 2013 Publication Applied mathematics Abbreviated Journal  
  Volume 4 Issue 1a Pages 263-270  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called superformula introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2013-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2152-7385 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107177 Serial 8576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: