toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Kim, E.; Horckmans, L.; Spooren, J.; Vrancken, K.C.; Quaghebeur, M.; Broos, K. pdf  doi
openurl 
  Title Selective leaching of Pb, Cu, Ni and Zn from secondary lead smelting residues Type A1 Journal article
  Year (down) 2017 Publication Hydrometallurgy Abbreviated Journal  
  Volume 169 Issue Pages 372-381  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Several HNO3-based leaching approaches were tested and optimized to selectively recover Pb and other minor metals (Cu, Ni, Zn) from secondary lead smelter residues (i.e., slag and matte). Firstly, the leaching behaviors of Pb and the matrix element Fe were studied at atmospheric pressure in the temperature range 25-70 degrees C. These elements were present in both materials studied as sulfide and oxide phases. For the sulfur-rich matte residue, the Pb leaching increased from 63% to 69% upon increasing the HNO3 concentration from 0.2 M to 0.5 M. However, by adding Fe(III) as an oxidation agent, Pb leaching from the matte amounted to 90% at 25 degrees C. At a higher temperature, Pb leaching was reduced due to PbSO4 precipitation. In this process, Cu, Zn and Ni leaching was insignificant. For the slag residue, HNO3 could not leach Pb (0.03% Pb leached), while Fe leaching was 19.8% due to a galvanic effect. However, Pb leaching of the slag was 82% in the presence of additional Fe(III). Secondly, to enhance leaching of the other base metals (Cu, Zn and Ni) from the matte, roasting followed by water leaching and (microwave assisted or autoclave) pressurized leaching in 0.5 M HNO3 were applied. During roasting, the FeS phase converted to Fe2O3 above 500 degrees C, and PbS and Pb phases were transformed into insoluble PbSO4 above 400 degrees C. Cu, Ni and Zn leaching was drastically enhanced by a roasting step at 600 degrees C followed by leaching with 0.5 M HNO3 at 50 degrees C, or by pressurized HNO3 leaching above 130 degrees C, whereby Pb leaching almost ceased due to PbSO4 precipitation. During the roasting above 600 degrees C, or microwave assisted extraction (MAE) at 160 degrees C for 15 min, FeS was completely converted to iron oxides that can be used as raw material for pig iron production. Based on the results, the methods investigated can be combined as process steps of two possible routes for the selective recovery of valuable metals and the production of a clean source of Fe oxides from the secondary lead smelting residues studied. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401878200045 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144299 Serial 8503  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: