toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S. url  doi
openurl 
  Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
  Year 2023 Publication Advanced materials Abbreviated Journal  
  Volume 35 Issue (up) 51 Pages 2306447-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106139400001 Publication Date 2023-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 29.4; 2023 IF: 19.791  
  Call Number UA @ admin @ c:irua:201143 Serial 9022  
Permanent link to this record
 

 
Author Eleftheriadis, G.K.; Filippousi, M.; Tsachouridou, V.; Darda, M.-A.; Sygellou, L.; Kontopoulou, I.; Bouropoulos, N.; Steriotis, T.; Charalambopoulou, G.; Vizirianakis, I.S.; Van Tendeloo, G.; Fatouros, D.G. pdf  url
doi  openurl
  Title Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen Type A1 Journal article
  Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut  
  Volume 515 Issue (up) 515 Pages 262-270  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Towards the development of novel drug carriers for oral delivery of poorly soluble drugs mesoporous aerogel carbons (CAs), namely CA10 and CA20 with different pore sizes (10 and 20 nm, respectively), were evaluated. The non-steroidal anti-inflammatory lipophilic compound ibuprofen was incorporated via passive loading. The drug loaded carbon aerogels were systemically investigated by means of High-Resolution Transmission Electron Microscopy (HR-TEM), Nitrogen physisorption studies, X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), X-ray photon electron spectroscopy (XPS) and zeta-potential studies. In vitro release studies were performed in simulated intestinal fluids reflecting both fasted (FaSSIF) and fed (FeSSIF) state conditions. Cytotoxicity studies were conducted with human intestinal cells (Caco-2). Drug was in an amorphous state in the pores of the carbon carrier as shown from the physicochemical characterization studies. The results showed marked differences in the release profiles for ibuprofen from the two aerogels in the media tested whereas in vitro toxicity profiles appear to be compatible with potential therapeutic applications at low concentrations. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000389150700024 Publication Date 2016-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.649  
  Call Number UA @ lucian @ c:irua:140231 Serial 4441  
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y. pdf  doi
openurl 
  Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue (up) 52 Pages 17860-17870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000328531000028 Publication Date 2013-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 5 Open Access  
  Notes Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:113697 Serial 3064  
Permanent link to this record
 

 
Author Yang, X.-Y.; Tian, G.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Wei, Y.-X.; Liu, Z.-M.; Deng, Z.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue (up) 52 Pages 14987-14995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micromesomacro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micromesomacroporous structure were thoroughly characterized. TEM images and 29Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micromesomacroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micromesomacroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micromesomacroporous structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000298547300035 Publication Date 2011-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 61 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:96274 Serial 3913  
Permanent link to this record
 

 
Author Percebom, A.M.M.; Giner-casares, J.J.; Claes, N.; Bals, S.; Loh, W.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Janus Gold Nanoparticles Obtained via Spontaneous Binary Polymer Shell Segregation Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 52 Issue (up) 52 Pages 4278-4281  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Janus gold nanoparticles are of high interest because they allow directed self-assembly and display plasmonic properties. We succeeded in coating gold nanoparticles with two different polymers that form a Janus shell. The spontaneous segregation of two immiscible polymers at the surface of the nanoparticles was verified by NOESY NMR and most importantly by electron microscopy analysis in two and three dimensions. The Janus structure is additionally shown to affect the aggregation behavior of the nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372176500003 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 44 Open Access OpenAccess  
  Notes Funding is acknowledged from the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom). A.M.P. thanks the Brazilian FAPESP for financial support (FAPESP 2012/21930-3 and 2014/01807-8) and J.J. G.-C. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship (#JCI-2012-12517). We thank Ada Herrero Ruiz and Daniel Padró for help with NMR measurements, Malou Henriksen for cell experiments and the Brazilian Synchrotron Laboratory (LNLS) for allocation of SAXS beamtime.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319  
  Call Number c:irua:133168 Serial 4009  
Permanent link to this record
 

 
Author Ying, J.; Hu, Z.-Y.; Yang, X.-Y.; Wei, H.; Xiao, Y.-X.; Janiak, C.; Mu, S.-C.; Tian, G.; Pan, M.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 52 Issue (up) 52 Pages 8219-8222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A facile high-viscosity-solvent method is presented to synthesize PtPd bimetallic nanocrystals highly dispersed in different mesostructures (2D and 3D structures), porosities (large and small pore sizes), and compositions (silica and carbon). Further, highly catalytic activity, stability and durability of the nanometals have been proven in different catalytic reactions.  
  Address State Key Laboratory Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China. xyyang@whut.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000378715400006 Publication Date 2016-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes This work was supported by NFSC (51472190 and 51503166), ISTCP (2015DFE52870), PCSIRT (IRT15R52) of China, and the Integrated Infrastructure Initiative of EU (312483-ESTEEM2).; esteem2jra4 Approved Most recent IF: 6.319  
  Call Number c:irua:134660 c:irua:134660 Serial 4110  
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M. pdf  url
doi  openurl
  Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue (up) 52 Pages 31261-31270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566579400025 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 1 Open Access OpenAccess  
  Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number EMAT @ emat @c:irua:172059 Serial 6416  
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Turner, S.; Van Tendeloo, G.; Jacobs, P.; Sels, B. pdf  doi
openurl 
  Title Heterogeneous conjugation of vegetable oil with alkaline treated highly dispersed Ru/USY catalysts Type A1 Journal article
  Year 2016 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen  
  Volume 526 Issue (up) 526 Pages 172-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous metal catalysts enable the direct conjugation of linoleic acid tails in vegetable oil to their conjugated linoleic acid (CIA) isomers. CIA-enriched oils are useful as renewable feedstock for the chemical industry and as nutraceutical. Up to now, a solvent-free process for conjugated oils without significant formation of undesired hydrogenation products was not existing. This work shows the design of Ru/USY catalysts able to directly conjugate highly unsaturated vegetable oils such as safflower oil in absence of solvent and hydrogen. Key is fast molecular transport of the bulky reagent and reactive product triglycerides in the zeolite crystal. A two-step zeolite post-synthetic treatment (with NH4OH and acetate salt) was applied to create the necessary mesoporosity. More open zeolite structures allow for a faster conjugation reaction, while securing a fast removal of the reactive conjugated triglycerides, otherwise rapidly deactivating through fouling and pore blockage by polymers. The best Ru/USY catalyst in this contribution is capable of producing exceptionally high yields of conjugated oils, containing up to almost 30 wt% conjugated fatty acid tails in safflower oil, at an initial production rate of 328 g(CLA) mL(-1) h(-1) per gram metal catalyst. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000384865600021 Publication Date 2016-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.339 Times cited 1 Open Access  
  Notes Approved Most recent IF: 4.339  
  Call Number UA @ lucian @ c:irua:137242 Serial 4383  
Permanent link to this record
 

 
Author González-Rubio, G.; de Oliveira, T.M.; Altantzis, T.; La Porta, A.; Guerrero-Martínez, A.; Bals, S.; Scarabelli, L.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth Type A1 Journal article
  Year 2017 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 53 Issue (up) 53 Pages 11360-11363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oxidative etching was used to produce gold seeds of different sizes and crystal habits. Following detailed characterization, the seeds were grown under different conditions. Our results bring new insights toward understanding the effect of size and crystallinity on the growth of anisotropic particles, whilst identifying guidelines for the optimisation of new synthetic protocols of predesigned seeds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412814900019 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 29 Open Access OpenAccess  
  Notes This work was funded by the Spanish MINECO (grant # MAT2013-46101-R, Ramon y Cajal fellowship to A. G.-M. and FPI fellowship to G. G.-R.). Financial support is acknowledged from the European Commission (EUSMI, 731019). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). T. A. acknowledges a postdoctoral grant from Research Foundation Flanders (FWO, Belgium). ECAS_Sara (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319  
  Call Number EMAT @ emat @c:irua:146101UA @ admin @ c:irua:146101 Serial 4734  
Permanent link to this record
 

 
Author Retuerto, M.; Yin, Z.; Emge, T.J.; Stephens, P.W.; Li, M.R.; Sarkar, T.; Croft, M.C.; Ignatov, A.; Yuan, Z.; Zhang, S.J.; Jin, C.; Paria Sena, R.; Hadermann, J.; Kotliar, G.; Greenblatt, M.; pdf  url
doi  openurl
  Title Hole doping and structural transformation in CsTl1-xHgxCl3 Type A1 Journal article
  Year 2015 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 54 Issue (up) 54 Pages 1066-1075  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract CsTlCl3 and CsTlF3 perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl3 in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF3 as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl3 with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl1xHgxCl3 (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl0.9Hg0.1Cl3 is tetragonal as the more stable phase of CsTlCl3. However, CsTl0.8Hg0.2Cl3 is already cubic with the space group Fm3̅m and with two different positions for Tl+ and Tl3+. For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl+, Tl3+, and Hg2+. All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl+ and Tl3+. Raman spectroscopy shows the presence of the active TlClTl stretching mode over the whole series and the intensity of the TlClHg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000348887400048 Publication Date 2014-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 5 Open Access  
  Notes Approved Most recent IF: 4.857; 2015 IF: 4.762  
  Call Number c:irua:124420 Serial 1476  
Permanent link to this record
 

 
Author Matthai, C.C.; Lamoen, D.; March, N.H. pdf  url
doi  openurl
  Title Melting temperatures and possible precursor plastic phases of CCl4and GeI4as a function of pressure Type A1 Journal article
  Year 2016 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq  
  Volume 54 Issue (up) 54 Pages 130-134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The motivation for the present study is to be found in the recent experiments of Fuchizaki and Hamaya on GeI4. They observed a rapid increase in the melting temperature Tm in going from atmospheric pressure to p ~ 2.6 GPa. Tm was found to be largely independent of pressure above this value. In this paper, heuristic arguments are presented to support the idea that until some critical pressure, a crystalline phase of SnI4, CCl4 and GeI4 molecular solids melts into a low density liquid. However, at this critical pressure, a phase boundary intersects Tm(p), separating a low density liquid phase from a high density liquid. The new phase boundary is between the crystal and an amorphous molecular solid with increasing polymerisation as the pressure is increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365724100012 Publication Date 2015-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9104 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.145 Times cited Open Access  
  Notes NHM wishes to thank Professors D. Lamoen and C. Van Alsenoy for making possible the continuing affiliation of Approved Most recent IF: 1.145  
  Call Number c:irua:130190 Serial 4029  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue (up) 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue (up) 54 Pages 12069-12073  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363396000031 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ lucian @ c:irua:129457 Serial 4186  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue (up) 55 Pages 1245-1257  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial 4073  
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res  
  Volume 55 Issue (up) 55 Pages 5911-5922  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000376825300013 Publication Date 2016-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:134214 Serial 4158  
Permanent link to this record
 

 
Author Retuerto, M.; Skiadopoulou, S.; Li, M.R.; Abakumov, A.M.; Croft, M.; Ignatov, A.; Sarkar, T.; Abbett, B.M.; Pokorný, J.; Savinov, M.; Nuzhnyy, D.; Prokleška, J.; Abeykoon, M.; Stephens, P.W.; Hodges, J.P.; Vaněk, P.; Fennie, C.J.; Rabe, K.M.; Kamba, S.; Greenblatt, M.; pdf  doi
openurl 
  Title Pb2MnTeO6 double perovskite : an antipolar anti-ferromagnet Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue (up) 55 Pages 4320-4329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to similar to 120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s2 lone-pair electrons, together with a surprising off-centering of Mn2+ (d5) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN approximate to 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near similar to 150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000375519700027 Publication Date 2016-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:134219 Serial 4258  
Permanent link to this record
 

 
Author Mikhailova, D.; Karakulina, O.M.; Batuk, D.; Hadermann, J.; Abakumov, A.M.; Herklotz, M.; Tsirlin, A.A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H. pdf  url
doi  openurl
  Title Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2upon Li Extraction and Insertion Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue (up) 55 Pages 7079-7089  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M–O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1–xRhO2 structure into the γ-MnO2-type rutile–ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O–O distances as short as 2.26 Å are stabilized in this structure via the local Rh–O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries. Upon chemical or electrochemical oxidation, layered LiRhO2 shows a unique structural transformation that involves both cation migration and oxidation of oxygen resulting in a stable tunnel-like rutile−ramsdellite intergrowth LiyRh3O6 structure. This structure demonstrates excellent performance with the steady and reversible capacity of ∼200 mAh/g. The stability of LiyRh3O6 is rooted in the accommodation of partially oxidized oxygen species through the formation of short O−O distances that are compatible with the connectivity of RhO6 octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380181400035 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Bundesministerium fur Bildung und Forschung, 03SF0477B ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:140848 Serial 4424  
Permanent link to this record
 

 
Author Cassidy, S.J.; Batuk, M.; Batuk, D.; Hadermann, J.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J. pdf  doi
openurl 
  Title Complex Microstructure and Magnetism in Polymorphic CaFeSeO Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue (up) 55 Pages 10714-10726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a noncentrosymmetric Cmc21 polymorph (a = 3.89684(2) A, b = 13.22054(8) A, c = 5.93625(2) A) the layers are related by the C-centering translation, while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a = 3.89557(6) A, b = 13.2237(6) A, c = 5.9363(3) A), the layers are related by inversion. The compound shows long-range antiferromagnetic order below a Neel temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe-O-Fe linkages and ferromagnetic coupling via Fe-Se-Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the noncentrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy.  
  Address Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385785700085 Publication Date 2016-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes We acknowledge the financial support of the EPSRC (Grants EP/I017844/1 and EP/M020517/1), the Leverhulme Trust (RPG-2014-221), and the Diamond Light Source (studentship support for S. J. Cassidy). We thank the ESTEEM2 network for enabling the electron microscopy investigations and the ISIS facility and the Diamond Light Source Ltd. for the award of beam time. We thank Dr. P. Manuel for assistance on WISH, Dr. R. I. Smith for assistance on GEM and POLARIS, and Dr. C. Murray and Dr. A. Baker for assistance on I11. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:136823 Serial 4312  
Permanent link to this record
 

 
Author Tong, Y.; Bladt, E.; Aygüler, M.F.; Manzi, A.; Milowska, K.Z.; Hintermayr, V.A.; Docampo, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication Type A1 Journal article
  Year 2016 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 55 Issue (up) 55 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387024200040 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 549 Open Access Not_Open_Access  
  Notes This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T.) and by the Alexander von Humboldt-Stiftung (L.P.). P.D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship. M.A. acknowledges the Scientific and Technological Research Council of Turkey. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @ c:irua:138215 Serial 4327  
Permanent link to this record
 

 
Author Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue (up) 55 Pages 10135-10142  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000385785700026 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:140313 Serial 4440  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J. pdf  url
doi  openurl
  Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue (up) 56 Pages 3489-3498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397171100045 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 26 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:141794 Serial 4491  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue (up) 56 Pages 931-942  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000392262400029 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:141471 Serial 4495  
Permanent link to this record
 

 
Author Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title From precursor powders to CsPbX3 perovskite nanowires : one-pot synthesis, growth mechanism, and oriented self-assembly Type A1 Journal article
  Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 56 Issue (up) 56 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single-step ligand-mediated synthesis of single-crystalline CsPbBr3 perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr3 nanocubes are transformed into NWs through an oriented-attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single-particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self-assemble in a quasi-oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000413314800065 Publication Date 2017-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 223 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go hybrid (SolTech)”, the China Scholarship Council (Y.T. and K.W.), the Alexander von Humboldt Stiftung (L.P.), and the Flemish Fund for Scientific Research (FWO Vlaanderen; E.B.). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant 335078-COLOURATOMS). ; ecas_sara Approved Most recent IF: 11.994  
  Call Number UA @ lucian @ c:irua:147434UA @ admin @ c:irua:147434 Serial 4876  
Permanent link to this record
 

 
Author Van Goethem, C.; Verbeke, R.; Pfanmoeller, M.; Koschine, T.; Dickmann, M.; Timpel-Lindner, T.; Egger, W.; Bals, S.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title The role of MOFs in Thin-Film Nanocomposite (TFN) membranes Type A1 Journal article
  Year 2018 Publication Journal of membrane science Abbreviated Journal J Membrane Sci  
  Volume 563 Issue (up) 563 Pages 938-948  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Incorporation of MOFs in interfacially polymerized Thin-Film Nanocomposite (TFN) membranes has widely been shown to result in increased membrane performance. However, the exact functioning of these membranes is poorly understood as large variability in permeance increase, filler incorporation and rejection changes can be observed in literature. The synthesis and functioning of TFN membranes (herein exemplified by ZIF-8 filled polyamide (PA) membranes prepared via the EFP method) was investigated via targeted membrane synthesis and thorough characterization via STEM-EDX, XRD and PALS. It is hypothesized that the acid generated during the interfacial polymerization (IP) at least partially degrades the crystalline, acid-sensitive ZIF-8 and that this influences the membrane formation (through so-called secondary effects, i.e. not strictly linked to the pore morphology of the MOF). Nanoscale HAADF-STEM imaging and STEM-EDX Zn-mapping revealed no ZIF-8 particles but rather the presence of randomly shaped regions with elevated Zn-content. Also XRD failed to show the presence of crystalline areas in the composite PA films. As the addition of the acid-quenching TEA led to an increase in the diffraction signal observed in XRD, the role of the acid was confirmed. The separate addition of dissolved Zn2+ to the synthesis of regular TFC membranes showed an increase in permeance while losing some salt retention, similar to observations regularly made for TFN membranes. While the addition of a porous material to a TFC membrane is a straightforward concept, all obtained results indicate that the synthesis and performance of such composite membranes is often more complex than commonly accepted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000441897200099 Publication Date 2018-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-7388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.035 Times cited 84 Open Access OpenAccess  
  Notes ; C.V.G. and R.V. kindly acknowledge respectively the Flemish Agency for Innovation through Science and Technology (IWT) (IWT, 141697) and the Flemish Fund for Scientific Research (FWO, 1500917N) for a PhD scholarship. The authors kindly acknowledge funding from KU Leuven through C16/17/005 and from the Belgian Federal Government through IAP 6/27 Functional Supramolecular systems. S.B. and M.P. acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOM). M.P. acknowledges funding from the European Union (ESTEEM2, No. 312483) and the HEiKA centre FunTECH-3D (Ministry of Science, Research and Art Baden-Wurttemberg, AZ: 33-753-30-20/3/3). The MLZ-Garching is kindly acknowledged for providing access to the NEPOMUC facilities (project no 11541). ; ecas_sara Approved Most recent IF: 6.035  
  Call Number UA @ lucian @ c:irua:153618UA @ admin @ c:irua:153618 Serial 5132  
Permanent link to this record
 

 
Author van der Graaf, W.N.P.; Tempelman, C.H.L.; Hendriks, F.C.; Ruiz-Martinez, J.; Bals, S.; Weckhuysen, B.M.; Pidko, E.A.; Hensen, E.J.M. url  doi
openurl 
  Title Deactivation of Sn-Beta during carbohydrate conversion Type A1 Journal article
  Year 2018 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen  
  Volume 564 Issue (up) 564 Pages 113-122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The deactivation of Sn-Beta zeolite catalyst during retro-aldolization and isomerization of glucose is investigated. Confocal fluorescence microscopy reveals that retro-aldolization of glucose in CH3OH at 160 degrees C is accompanied with the build-up of insoluble oligomeric deposits in the micropores, resulting in a rapid catalyst deactivation. These deposits accumulate predominantly in the outer regions of the zeolite crystals, which points to mass transport limitations. Glucose isomerization in water is not only accompanied by the formation of insoluble deposits in the micropores, but also by the structural degradation of the zeolite due to desilication and destannation. Enhanced and sustained catalytic performance can be achieved by using ethanol/water mixtures as the reaction solvent instead of water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000443669800012 Publication Date 2018-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.339 Times cited 25 Open Access OpenAccess  
  Notes ; This work was performed in the framework of the CatchBio programme and the Joint Scientific Thematic Research Programme funded by the The Netherlands Organization for Scientific Research (NWO) and the Chinese Ministry of Science and Technology. J.R.M. acknowledges the Dutch Science Foundation (NWO) for his personal VENI grant. ; Approved Most recent IF: 4.339  
  Call Number UA @ lucian @ c:irua:153715UA @ admin @ c:irua:153715 Serial 5088  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Claes, N.; Solís, D.M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M.; Grzelczak, M. pdf  url
doi  openurl
  Title Reversible Clustering of Gold Nanoparticles under Confinement Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue (up) 57 Pages 3183-3186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A limiting factor of solvent-induced nanoparticle self-assembly is the need for constant sample dilution in assembly/disassembly cycles. Changes in the nanoparticle concentration alter the kinetics of the subsequent assembly process, limiting optical signal recovery. Herein, we show that upon confining hydrophobic nanoparticles in permeable silica nanocapsules, the number of nanoparticles participating in cyclic aggregation remains constant despite bulk changes in solution, leading to highly reproducible plasmon band shifts at different solvent compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426759900031 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 53 Open Access OpenAccess  
  Notes L.M.L.-M. and M.G. acknowledge funding from the Spanish MINECO (Grant #MAT2013-46101R). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). D.M.S., and J.M.T, acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), and from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @c:irua:149558UA @ admin @ c:irua:149558 Serial 4911  
Permanent link to this record
 

 
Author Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A.F.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B.; Feldmann, J.; Polavarapu, L. pdf  url
doi  openurl
  Title Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3(X = Cl, Br, I) nanorods Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue (up) 57 Pages 16094-16098  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Post-synthetic shape-transformation processes provide access to colloidal nanocrystal morphologies that are unattainable by direct synthetic routes. Herein, we report our finding about the ligand-induced fragmentation of CsPbBr3 perovskite nanowires (NWs) into low aspect-ratio CsPbX3 (X = Cl, Br and I) nanorods (NRs) during halide ion exchange reaction with PbX2-ligand solution. The shape transformation of NWs-to-NRs resulted in an increase of photoluminescence efficiency owing to a decrease of nonradiative decay rates. Importantly, we found that the perovskite NRs exhibit single photon emission as revealed by photon antibunching measurements, while it is not detected in parent NWs. This work not only reports on the quantum light emission of low aspect ratio perovskite NRs, but also expands our current understanding of shape-dependent optical properties of perovskite nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452235600024 Publication Date 2018-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 70 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T. and K.W.), by the Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMU excellent (L.P., J.F.). M.F., P.T. and B.L. acknowledge the financial support from the French National Agency for Research, the French Excellence Initiative (Idex Bordeaux, LAPHIA Program) and the Institut Universitaire de France. E.B. and S.B. acknowledge the financial support from the European Research Council Starting Grant # 335078-COLOURATOMS. L.P. thank the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:156246 Serial 5283  
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K. pdf  doi
openurl 
  Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 578 Issue (up) 578 Pages 133-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000351686500019 Publication Date 2015-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 41 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number c:irua:125517 Serial 3626  
Permanent link to this record
 

 
Author Smolders, S.; Willhammar, T.; Krajnc, A.; Şentosun, K.; Wharmby, M.T.; Lomachenko, K.A.; Bals, S.; Mali, G.; Roeffaers, M.B.J.; De Vos, D.E.; Bueken, B. pdf  doi
openurl 
  Title A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 58 Issue (up) 58 Pages 9160-9165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo) catalytic potential, only a few Ti-IV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of (TiO6)-O-IV octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476691200034 Publication Date 2019-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 97 Open Access Not_Open_Access  
  Notes ; S.S., B.B., and D.E.D.V. gratefully acknowledge the FWO for funding (Aspirant grant, postdoctoral grant, project funding). T.W. acknowledges a grant from the Swedish research council (VR, 2014-06948). He acknowledges financial support from the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR (no. 2012.0112) as well as for purchasing the TEMs. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0021 and project No. N1-0079). We thank beamline I15-1 (XPDF), Diamond Light Source, for collection of X-ray total scattering data as part of the in-house research program (M.T.W.). A. Venier and O. Mathon are kindly acknowledged for the help during the XAS experiment at BM23 beamline of ESRF. We thank C. Lamberti and L. Braglia for providing the reference EXAFS spectrum of anatase. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:161932 Serial 5382  
Permanent link to this record
 

 
Author Batuk, M.; Buffiere, M.; Zaghi, A.E.; Lenaers, N.; Verbist, C.; Khelifi, S.; Vleugels, J.; Meuris, M.; Hadermann, J. pdf  doi
openurl 
  Title Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 583 Issue (up) 583 Pages 142-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract For the development of the photovoltaic industry cheap methods for the synthesis of Cu(In,Ga)Se-2 (CIGSe) based solar cells are required. In this work, CIGSe thin films were obtained by a solution-based method using oxygen-bearing derivatives. With the aimof improving the morphology of the printed CIGSe layers, we investigated two different annealing conditions of the precursor layer, consisting of (1) a direct selenization step (reference process), and (2) a pre-treatment thermal step prior to the selenization. We showed that the use of an Air/H2S burn-out step prior to the selenization step increases the CIGSe grain size and reduces the carbon content. However, it leads to the reduction of the solar cell efficiency from 4.5% in the reference sample down to 0.5% in the annealed sample. Detailed transmission electron microscopy analysis, including high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray mapping, was applied to characterize the microstructure of the film and to determine the relationship between microstructure and the solar cell performance. We demonstrated that the relatively low efficiency of the reference solar cells is related not only to the nanosize of the CIGSe grains and presence of the pores in the CIGSe layer, but also to the high amount of secondary phases, namely, In/Ga oxide (or hydroxide) amorphous matter, residuals of organicmatter (carbon), and copper sulfide that is formed at the CIGSe/MoSe2 interface. The annealing in H2S during the burn-out step leads to the formation of the copper sulfide at all grain boundaries and surfaces in the CIGSe layer, which results in the noticeably efficiency drop. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000353812400024 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number c:irua:126009 Serial 845  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: