|
Record |
Links |
|
Author |
Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A.F.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B.; Feldmann, J.; Polavarapu, L. |
|
|
Title |
Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3(X = Cl, Br, I) nanorods |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Angewandte Chemie: international edition in English |
Abbreviated Journal |
Angew Chem Int Edit |
|
|
Volume |
57 |
Issue |
57 |
Pages |
16094-16098 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Post-synthetic shape-transformation processes provide access to colloidal nanocrystal morphologies that are unattainable by direct synthetic routes. Herein, we report our finding about the ligand-induced fragmentation of CsPbBr3 perovskite nanowires (NWs) into low aspect-ratio CsPbX3 (X = Cl, Br and I) nanorods (NRs) during halide ion exchange reaction with PbX2-ligand solution. The shape transformation of NWs-to-NRs resulted in an increase of photoluminescence efficiency owing to a decrease of nonradiative decay rates. Importantly, we found that the perovskite NRs exhibit single photon emission as revealed by photon antibunching measurements, while it is not detected in parent NWs. This work not only reports on the quantum light emission of low aspect ratio perovskite NRs, but also expands our current understanding of shape-dependent optical properties of perovskite nanocrystals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000452235600024 |
Publication Date |
2018-10-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7851; 0570-0833 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
11.994 |
Times cited |
70 |
Open Access |
OpenAccess |
|
|
Notes |
; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T. and K.W.), by the Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMU excellent (L.P., J.F.). M.F., P.T. and B.L. acknowledge the financial support from the French National Agency for Research, the French Excellence Initiative (Idex Bordeaux, LAPHIA Program) and the Institut Universitaire de France. E.B. and S.B. acknowledge the financial support from the European Research Council Starting Grant # 335078-COLOURATOMS. L.P. thank the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). ; |
Approved |
Most recent IF: 11.994 |
|
|
Call Number |
UA @ admin @ c:irua:156246 |
Serial |
5283 |
|
Permanent link to this record |