|
Record |
Links |
|
Author |
Tong, Y.; Bladt, E.; Aygüler, M.F.; Manzi, A.; Milowska, K.Z.; Hintermayr, V.A.; Docampo, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. |
|
|
Title |
Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Angewandte Chemie: international edition in English |
Abbreviated Journal |
Angew Chem Int Edit |
|
|
Volume |
55 |
Issue |
55 |
Pages |
13887-13892 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000387024200040 |
Publication Date |
2016-09-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7851 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
11.994 |
Times cited |
549 |
Open Access |
Not_Open_Access |
|
|
Notes |
This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T.) and by the Alexander von Humboldt-Stiftung (L.P.). P.D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship. M.A. acknowledges the Scientific and Technological Research Council of Turkey. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); |
Approved |
Most recent IF: 11.994 |
|
|
Call Number |
EMAT @ emat @ c:irua:138215 |
Serial |
4327 |
|
Permanent link to this record |