toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Hoey, S.; Seuntjens, P.; van der Kwast, J.; Nopens, I. pdf  doi
openurl 
  Title A qualitative model structure sensitivity analysis method to support model selection Type A1 Journal article
  Year 2014 Publication Journal of hydrology Abbreviated Journal  
  Volume 519 Issue (down) D Pages 3426-3435  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The selection and identification of a suitable hydrological model structure is a more challenging task than fitting parameters of a fixed model structure to reproduce a measured hydrograph. The suitable model structure is highly dependent on various criteria, i.e. the modeling objective, the characteristics and the scale of the system under investigation and the available data. Flexible environments for model building are available, but need to be assisted by proper diagnostic tools for model structure selection. This paper introduces a qualitative method for model component sensitivity analysis. Traditionally, model sensitivity is evaluated for model parameters. In this paper, the concept is translated into an evaluation of model structure sensitivity. Similarly to the one-factor-at-a-time (OAT) methods for parameter sensitivity, this method varies the model structure components one at a time and evaluates the change in sensitivity towards the output variables. As such, the effect of model component variations can be evaluated towards different objective functions or output variables. The methodology is presented for a simple lumped hydrological model environment, introducing different possible model building variations. By comparing the effect of changes in model structure for different model objectives, model selection can be better evaluated. Based on the presented component sensitivity analysis of a case study, some suggestions with regard to model selection are formulated for the system under study: (1) a non-linear storage component is recommended, since it ensures more sensitive (identifiable) parameters for this component and less parameter interaction; (2) interflow is mainly important for the low flow criteria; (3) excess infiltration process is most influencing when focussing on the lower flows; (4) a more simple routing component is advisable; and (5) baseflow parameters have in general low sensitivity values, except for the low flow criteria. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347589600057 Publication Date 2014-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:123809 Serial 7395  
Permanent link to this record
 

 
Author Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2conversion in a dielectric barrier discharge plasma: N2in the mix as a helping hand or problematic impurity? Type A1 Journal article
  Year 2016 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 9 Issue (down) 9 Pages 999-1011  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent

gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372243600030 Publication Date 2015-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 68 Open Access  
  Notes The authors acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 29.518  
  Call Number c:irua:133169 Serial 4020  
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue (down) 9 Pages 41577-41585  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417005900057 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 29 Open Access OpenAccess  
  Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @c:irua:147243 Serial 4804  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Tytgat, T.; Van Passel, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air Type A1 Journal article
  Year 2014 Publication Chemicke zvesti Abbreviated Journal Chem Pap  
  Volume 68 Issue (down) 9 Pages 1273-1278  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336443400015 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-6352 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.258 Times cited 10 Open Access  
  Notes ; S. W. V. wishes to thank the Research Foundation Flanders (FWO) for the financial support received. The authors are grateful to the University of Antwerp for supporting and funding this research. Evonik is sincerely thanked for providing catalyst samples for our experiments free of charge. All companies are thanked for providing specific pricing data. ; Approved Most recent IF: 1.258; 2014 IF: 1.468  
  Call Number UA @ admin @ c:irua:117297 Serial 6174  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue (down) 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Faust, V.; Gruber, W.; Ganigue, R.; Vlaeminck, S.E.; Udert, K.M. pdf  url
doi  openurl
  Title Nitrous oxide emissions and carbon footprint of decentralized urine fertilizer production by nitrification and distillation Type A1 Journal article
  Year 2022 Publication ACS ES&T engineering Abbreviated Journal  
  Volume 2 Issue (down) 9 Pages 1745-1755  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Combining partial nitrification, granular activated carbon (GAC) filtration, and distillation is a well-studied approach to convert urine into a fertilizer. To evaluate the environmental sustainability of a technology, the operational carbon footprint and therefore nitrous oxide (N2O) emissions should be known, but N2O emissions from urine nitrification have not been assessed yet. Therefore, N2O emissions of a decentralized urine nitrification reactor were monitored for 1 month. During nitrification, 0.4-1.2% of the total nitrogen load was emitted as N2O-N with an average N2O emission factor (EFN2O) of 0.7%. Additional N2O was produced during anoxic storage between nitrification and GAC filtration with an estimated EFN2O of 0.8%, resulting in an EFN2O of 1.5% for the treatment chain. N2O emissions during nitrification can be mitigated by 60% by avoiding low dissolved oxygen or anoxic conditions and nitrite concentrations above 5 mg-N L-1. Minimizing the hydraulic retention time between nitrification and GAC filtration can reduce N2O formation during intermediate storage by 100%. Overall, the N2O emissions accounted for 45% of the operational carbon footprint of 14 kg-CO2,equiv kg-N-1 for urine fertilizer production. Using electricity from renewable sources and applying the proposed N2O mitigation strategies could potentially lower the carbon footprint by 85%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835412700001 Publication Date 2022-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189599 Serial 7182  
Permanent link to this record
 

 
Author Winterstetter, A.; Grodent, M.; Kini, V.; Ragaert, K.; Vrancken, K.C.M. url  doi
openurl 
  Title A review of technological solutions to prevent or reduce marine plastic litter in developing countries Type A1 Journal article
  Year 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 13 Issue (down) 9 Pages 4894  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum-land, rivers, sea-two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650920900001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.789 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:178368 Serial 7396  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Spieck, E.; Vilchez-Vargas, R.; Bode, S.; Boeckx, P.; Schouten, S.; Jauregui, R.; Pieper, D.H.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title A robust nitrifying community in a bioreactor at 50 degrees C opens up the path for thermophilic nitrogen removal Type A1 Journal article
  Year 2016 Publication The ISME journal : multidisciplinary journal of microbial ecology Abbreviated Journal  
  Volume 10 Issue (down) 9 Pages 2293-2303  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of C-13-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198 +/- 10 and 894 +/- 81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386664600019 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7362 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138184 Serial 7397  
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Vanermen, G.; de Brucker, N.; Diels, L. doi  openurl
  Title Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography Type A1 Journal article
  Year 2009 Publication Journal of chromatography : A Abbreviated Journal  
  Volume 1216 Issue (down) 9 Pages 1524-1527  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLCGCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000263610500035 Publication Date 2009-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9673 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:76320 Serial 7769  
Permanent link to this record
 

 
Author Seuntjens, D.; Bundervoet, B.L.M.; Mollen, H.; De Mulder, C.; Wypkema, E.; Verliefde, A.; Nopens, I.; Colsen, J.G.M.; Vlaeminck, S.E. url  doi
openurl 
  Title Energy efficient treatment of A-stage effluent : pilot-scale experiences with short-cut nitrogen removal Type A1 Journal article
  Year 2016 Publication Water science and technology Abbreviated Journal  
  Volume 73 Issue (down) 9 Pages 2150-2158  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376285300013 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130442 Serial 7908  
Permanent link to this record
 

 
Author Ilgrande, C.; Mastroleo, F.; Christiaens, M.E.R.; Lindeboom, R.E.F.; Prat, D.; Van Hoey, O.; Ambrozova, I.; Coninx, I.; Heylen, W.; Pommerening-Roser, A.; Spieck, E.; Boon, N.; Vlaeminck, S.E.; Leys, N.; Clauwaert, P. pdf  url
doi  openurl
  Title Reactivation of microbial strains and synthetic communities after a spaceflight to the International Space Station : corroborating the feasibility of essential conversions in the MELiSSA Loop Type A1 Journal article
  Year 2019 Publication Astrobiology Abbreviated Journal  
  Volume 19 Issue (down) 9 Pages 1167-1176  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22 degrees C +/- 1 degrees C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5 degrees C +/- 2 degrees C) or room temperature (22 degrees C +/- 1 degrees C and 21 degrees C +/- 0 degrees C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000475278300001 Publication Date 2019-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070; 1531-1074 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161342 Serial 8456  
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Tavkelidze, I.; Gerats, T. url  doi
openurl 
  Title Universal natural shapes : from unifying shape description to simple methods for shape analysis and boundary value problems Type A1 Journal article
  Year 2012 Publication PLoS ONE Abbreviated Journal  
  Volume 7 Issue (down) 9 Pages e29324-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309517500001 Publication Date 2012-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:102202 Serial 8711  
Permanent link to this record
 

 
Author Saeumel, I.; Ramirez, L.R.; Santolin, J.; Pintado, K. url  doi
openurl 
  Title A step to disentangle diversity patterns in Uruguayan grasslands : climatic seasonality, novel land-uses, and landscape context drive diversity of ground flora Type A1 Journal article
  Year 2023 Publication Conservation Science and Practice Abbreviated Journal  
  Volume 5 Issue (down) 9 Pages 1-20  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract South American grasslands contain extraordinary biodiversity and play a central role in the subsistence of regional agroecosystems. In recent decades, afforestation, followed by the soybean planting boom, have led to drastic land-use changes at the expense of grasslands. Impacts on local biodiversity have remained understudied. We explored the taxonomic richness and ss-diversity of plants of ground layer (excluding trees and shrubs) at different land uses, its interplay at regional scale with environmental heterogeneity, and at local scale with novel land cover types and landscape configurations. We conducted correlation, principal component, NDMS, and SDR analysis to explore variation of taxonomic richness, richness difference, replacement, and similarity of ground flora as response to environmental filters and land use change across Uruguay. We surveyed 160 plots distributed in 10 land cover types, that is, closed and open native forests, different grasslands, crops, orchards, and timber plantations. We observed overlaying regional patterns driven by seasonality of temperature and precipitation, and land cover shaping taxonomic richness at local scale. Landscape configuration affects diversity patterns of native ground flora, which seems to be sustained mainly by the “old growth grassland” species pool. Taxonomic richness of native species decreases with an increase of distance to grassland. Crops and grasslands harbor a higher number of native species in the ground flora than native forests and timber plantations. The introduction of exotics is driven mostly by crops or highly modified pastures. Diversity patterns only partially reflect the ecoregion concept. Expanding the perspective from conservation in purely natural ecosystems to measures conserving species richness in human-modified landscapes is a powerful tool against species loss in the Anthropocene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034673500001 Publication Date 2023-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-4854 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198300 Serial 8828  
Permanent link to this record
 

 
Author Liao, T.-W.; Verbruggen, S.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P. pdf  url
doi  openurl
  Title TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light Type A1 Journal article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 8 Issue (down) 8 Pages 30  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, we applied cluster beam deposition (CBD) as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs) produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML) equivalents. Scanning Electron Microscopy (SEM) images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML) and aggregate at higher coverage (8 ML). A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 x 10-6 over a period of 93 h). These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424131600030 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 29 Open Access OpenAccess  
  Notes The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 607417 (Catsense). We also thank the Research Foundation—Flanders (FWO, Belgium), the Flemish Concerted Action (BOF KU Leuven, Project No. GOA/14/007) research program, and the microscope was partly funded by the Hercules Fund from the Flemish Government for the support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:147898UA @ admin @ c:irua:147898 Serial 4805  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue (down) 8 Pages acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H. pdf  url
doi  openurl
  Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
  Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res  
  Volume 94 Issue (down) 8 Pages e10772-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000840360100001 Publication Date 2022-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1061-4303; 1554-7531 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:189409 Serial 7174  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Perreault, P.; Lenaerts, S. pdf  doi
openurl 
  Title A new generalized empirical correlation for predicting methane hydrate equilibrium conditions in pure water Type A1 Journal article
  Year 2021 Publication Industrial & Engineering Chemistry Research Abbreviated Journal Ind Eng Chem Res  
  Volume 60 Issue (down) 8 Pages 3474-3483  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to a new generalized empirical correlation for predicting methane (CH4) hydrate equilibrium conditions in pure water. Unlike the conventional thermodynamic approach that involves complex reckoning, the proposed empirical equation is developed by regressing 215 experimental data points from the literature and validating with 45 data points for predicting methane hydrate equilibrium conditions in pure water. The new correlation is proposed for a temperature and pressure range of 273.2–303.48 K and 2.63–72.26 MPa, respectively. The accuracy and performance of the proposed correlation is quantitatively evaluated using statistical error analysis. The proposed correlation was able to estimate CH4 hydrate equilibrium conditions satisfactorily with an R2 of 0.99987. The overall error analysis for the proposed correlation shows fair agreement with the experimental data reported within the literature. Concurrently, the new correlation showed better performance in predicting equilibrium conditions compared to those calculated by other empirical correlations available in the literature within the investigated range. In addition, the proposed empirical equation is also checked to evaluate its efficacy in fitting each set of experimental binary/ternary methane hydrates (BTMH) and binary hydrogen hydrates (BHH) for an accurate representation of equilibrium data over a wide range of composition, pressure, and temperature conditions. A maximum percentage deviation of 0.58% and 0.24% was observed between experimental and calculated equilibrium conditions for BTMH and BHH, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626326200017 Publication Date 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:175862 Serial 7394  
Permanent link to this record
 

 
Author Kulkarni, S.; Gonzalez-Quiroga, A.; Nuñez, M.; Schuerewegen, C.; Perreault, P.; Goel, C.; Heynderickx, G.J.; Van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units Type A1 Journal article
  Year 2019 Publication AIChE journal Abbreviated Journal  
  Volume 65 Issue (down) 8 Pages e16614-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Vortex units are commonly considered for various single and multiphase applications due to their process intensification capabilities. The transition from gas‐only flow to gas–solid flow remains largely unexplored nonetheless. During this transition, primary flow phenomenon, jets, and secondary flow phenomena, counterflow and backflow, are substantially reduced, before a rotating solids bed is established. This transitional flow regime is referred to as the vortex suppression regime. In the present work, this flow transition is identified and validated through experimental and computational studies in two vortex units with a scale differing by a factor of 2, using spherical aluminum and alumina particles. This experimental data supports the proposed theoretical particle monolayer solids loading that allows estimation of vortex suppression regime solids capacity for any vortex unit. It is shown that the vortex suppression regime is established at a solids loading theoretically corresponding to a monolayer being formed in the unit for 1g‐Geldart D‐ and 1g‐Geldart B‐type particles. The model closely agrees with experimental vortex suppression range for both aluminum and alumina particles. The model, as well as the experimental data, shows that the flow suppression regime depends on unit dimensions, particle diameter, and particle density but is independent of gas flow rate. This combined study, based on experimental and computational data and on a theoretical model, reveals the vortex suppression to be one of the basic operational parameters to study flow in a vortex unit and that a simple monolayer model allows to estimate the needed solids loading for any vortex device to induce this flow transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474620800026 Publication Date 2019-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-1541 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162121 Serial 7945  
Permanent link to this record
 

 
Author Schneidewind, U.; van Berkel, M.; Anibas, C.; Vandersteen, G.; Schmidt, C.; Joris, I.; Seuntjens, P.; Batelaan, O.; Zwart, H.J. pdf  doi
openurl 
  Title LPMLE3: A novel 1-D approach to study water flow in streambeds using heat as a tracer Type A1 Journal article
  Year 2016 Publication Water resources research Abbreviated Journal  
  Volume 52 Issue (down) 8 Pages 6596-6610  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383684400051 Publication Date 2016-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1397; 0043-137x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144678 Serial 8189  
Permanent link to this record
 

 
Author Fougerolle, Y.D.; Truchetet, F.; Demonceaux, C.; Gielis, J. pdf  doi
openurl 
  Title A robust evolutionary algorithm for the recovery of rational Gielis curves Type A1 Journal article
  Year 2013 Publication Pattern recognition Abbreviated Journal  
  Volume 46 Issue (down) 8 Pages 2078-2091  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis curves (GC) can represent a wide range of shapes and patterns ranging from star shapes to symmetric and asymmetric polygons, and even self intersecting curves. Such patterns appear in natural objects or phenomena, such as flowers, crystals, pollen structures, animals, or even wave propagation. Gielis curves and surfaces are an extension of Lamé curves and surfaces (superquadrics) which have benefited in the last two decades of extensive researches to retrieve their parameters from various data types, such as range images, 2D and 3D point clouds, etc. Unfortunately, the most efficient techniques for superquadrics recovery, based on deterministic methods, cannot directly be adapted to Gielis curves. Indeed, the different nature of their parameters forbids the use of a unified gradient descent approach, which requires initial pre-processings, such as the symmetry detection, and a reliable pose and scale estimation. Furthermore, even the most recent algorithms in the literature remain extremely sensitive to initialization and often fall into local minima in the presence of large missing data. We present a simple evolutionary algorithm which overcomes most of these issues and unifies all of the required operations into a single though efficient approach. The key ideas in this paper are the replacement of the potential fields used for the cost function (closed form) by the shortest Euclidean distance (SED, iterative approach), the construction of cost functions which minimize the shortest distance as well as the curve length using R-functions, and slight modifications of the evolutionary operators. We show that the proposed cost function based on SED and R-function offers the best compromise in terms of accuracy, robustness to noise, and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317944800002 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107181 Serial 8485  
Permanent link to this record
 

 
Author Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R. pdf  doi
openurl 
  Title Towards integrated sustainability assessment for energetic use of biomass : a state of the art evaluation of assessment tools Type A1 Journal article
  Year 2011 Publication Renewable and sustainable energy reviews Abbreviated Journal  
  Volume 15 Issue (down) 8 Pages 3918-3933  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Biomass is expected to play an increasingly significant role in the greening of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298764100043 Publication Date 2011-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:96444 Serial 8682  
Permanent link to this record
 

 
Author Hofman, J.; Castanheiro, A.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; De Wael, K.; Lenaerts, S.; Samson, R. pdf  url
doi  openurl
  Title Impact of urban street canyon architecture on local atmospheric pollutant levels and magneto-chemical PM10 composition : an experimental study in Antwerp, Belgium Type A1 Journal article
  Year 2019 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 712 Issue (down) 712 Pages 135534  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract As real-life experimental data on natural ventilation of atmospheric pollution levels in urban street canyons is still scarce and has proven to be complex, this study, experimentally evaluated the impact of an urban street canyon opening on local atmospheric pollution levels, during a 2-week field campaign in a typical urban street canyon in Antwerp, Belgium. Besides following up on atmospheric particulate matter (PM), ultrafine particles (UFPs) and black carbon (BC) levels, the magneto-chemical PM10 composition was quantified to identify contributions of specific elements in enclosed versus open street canyon sections. Results indicated no higher overall PM, UFP and BC concentrations at the enclosed site compared to the open site, but significant day-to-day variability between both monitoring locations, depending on the experienced wind conditions. On days with oblique wind regimes (4 out of 14), natural ventilation was observed at the open location while higher element contributions of Ca, Fe, Co, Ni, Cu, Zn and Sr were exhibited at the enclosed location. Magnetic properties correlated with the PM10 filter loading, and elemental content of Fe, Cr, Mn and Ti. Magnetic bivariate ratios identified finel-grained magnetite carriers with grain sizes below 0.1 μm, indicating similar magnetic source contributions at both monitoring locations. Our holistic approach, combining atmospheric monitoring with magneto-chemical PM characterization has shown the complex impact of real-life wind flow regimes, different source contributions and local traffic dynamics on the resulting pollutant concentrations and contribute to a better understanding on the urban ventilation processes of atmospheric pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512369600078 Publication Date 2019-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access  
  Notes Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:165459 Serial 5654  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue (down) 7 Pages 1413-1418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Blondiaux, E.; Bomon, J.; Smolen, M.; Kaval, N.; Lemière, F.; Sergeyev, S.; Diels, L.; Sels, B.; Maes, B.U.W. url  doi
openurl 
  Title Bio-based aromatic amines from lignin-derived monomers Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 7 Issue (down) 7 Pages 6906-6916  
  Keywords A1 Journal article; Engineering sciences. Technology; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new approach to synthesize valuable 3,4-dialkoxyanilines and alkyl propionates from lignin-derived 4-propylguaiacol and -catechol with overall isolated yields up to 65% has been described. The strategy is based on the introduction of nitrogen via a Beckmann rearrangement. Amino introduction therefore coincides with a C-defunctionalization reaction; overall a replacement of the propyl chain by an amino group is obtained. The process only requires cheap bulk chemicals as reagents/reactants and does not involve column chromatography to purify the reaction products. Furthermore, all carbon atoms from the biorenewable lignin-derived monomers are transformed into valuable compounds. Greenness was assessed by performing a Green Metrics analysis on two dialkoxyanilines. A comparison was made with literature routes for these compounds starting from a petrochemical substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000463462100050 Publication Date 2019-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159378 Serial 7556  
Permanent link to this record
 

 
Author Jochems, P.; Satyawali, Y.; Diels, L.; Dejonghe, W. doi  openurl
  Title Enzyme immobilization on/in polymeric membranes : status, challenges and perspectives in biocatalytic membrane reactors (BMRs) Type A1 Journal article
  Year 2011 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal  
  Volume 13 Issue (down) 7 Pages 1609-1623  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of enzymes is beneficial in terms of improving the process economics by enabling enzyme re-use and enhancing overall productivity and robustness. Increasingly, membranes are thought to be good supports for enzyme immobilization. These resulting biocatalytic membranes are integrated in reactors known as biocatalytic membrane reactors (BMRs) which enable the integration of biocatalysis and separation. Often the available commercial membranes require modifications to make them suitable for enzyme immobilization. Different immobilization techniques can be used on such suitable membranes, but no general rules exist for making a choice between them. Despite the advantages of BMR application, there are some issues which need to be addressed in order to achieve up-scaling of such systems. In this review, the different aspects of enzyme immobilization on membranes are discussed to show the complexity of this interdisciplinary technology. In addition, the existing issues which require further investigation are highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292450600002 Publication Date 2011-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:89567 Serial 7930  
Permanent link to this record
 

 
Author Verreydt, G.; Annable, M.D.; Kaskassian, S.; van Keer, I.; Bronders, J.; Diels, L.; Vanderauwera, P. pdf  doi
openurl 
  Title Field demonstration and evaluation of the passive flux meter on a CAH groundwater plume Type A1 Journal article
  Year 2013 Publication Environmental Science and Pollution Research Abbreviated Journal  
  Volume 20 Issue (down) 7 Pages 4621-4634  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract This study comprises the first application of the Passive Flux Meter (PFM) for the measurement of chlorinated aliphatic hydrocarbon (CAH) mass fluxes and Darcy water fluxes in groundwater at a European field site. The PFM was originally developed and applied to measurements near source zones. The focus of the PFM is extended from near source to plume zones. For this purpose, 48 PFMs of 1.4 m length were constructed and installed in eight different monitoring wells in the source and plume zone of a CAH-contaminated field site located in France. The PFMs were retrieved, sampled, and analyzed after 3 to 11 weeks of exposure time, depending on the expected contaminant flux. PFM evaluation criteria include analytical, technical, and practical aspects as well as conditions and applicability. PFM flux data were compared with so-called traditional soil and groundwater concentration data obtained using active sampling methods. The PFMs deliver reasonable results for source as well as plume zones. The limiting factor in the PFM applicability is the exposure time together with the groundwater flux. Measured groundwater velocities at the field site range from 2 to 41 cm/day. Measured contaminant flux data raise up to 13 g/m(2)/day for perchloroethylene in the plume zone. Calculated PFM flux averaged concentration data and traditional concentration data were of similar magnitude for most wells. However, both datasets need to be compared with reservation because of the different sampling nature and time. Two important issues are the PFM tracer loss during installation/extraction and the deviation of the groundwater flow field when passing the monitoring well and PFM. The demonstration of the PFM at a CAH-contaminated field site in Europe confirmed the efficiency of the flux measurement technique for source as well as plume zones. The PFM can be applied without concerns in monitoring wells with European standards. The acquired flux data are of great value for the purpose of site characterization and mass discharge modeling, and can be used in combination with traditional soil and groundwater sampling methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000321126700030 Publication Date 2013-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:109817 Serial 7965  
Permanent link to this record
 

 
Author Van de Vijver, E.; Van Meirvenne, M.; Vandenhaute, L.; Delefortrie, S.; De Smedt, P.; Saey, T.; Seuntjens, P. doi  openurl
  Title Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar Type A1 Journal article
  Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal  
  Volume 17 Issue (down) 7 Pages 1271-1281  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357793300008 Publication Date 2015-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127130 Serial 8715  
Permanent link to this record
 

 
Author Jochems, P.; Satyawali, Y.; van Roy, S.; Doyen, W.; Diels, L.; Dejonghe, W. pdf  doi
openurl 
  Title Characterization and optimization of \beta-galactosidase immobilization process on a mixed-matrix membrane Type A1 Journal article
  Year 2011 Publication Enzyme and microbial technology Abbreviated Journal  
  Volume 49 Issue (down) 6/7 Pages 580-588  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract β-Galactosidase is an important enzyme catalyzing not only the hydrolysis of lactose to the monosaccharides glucose and galactose but also the transgalactosylation reaction to produce galacto-oligosaccharides (GOS). In this study, β-galactosidase was immobilized by adsorption on a mixed-matrix membrane containing zirconium dioxide. The maximum β-galactosidase adsorbed on these membranes was 1.6 g/m2, however, maximal activity was achieved at an enzyme concentration of around 0.5 g/m2. The tests conducted to investigate the optimal immobilization parameters suggested that higher immobilization can be achieved under extreme parameters (pH and temperature) but the activity was not retained at such extreme operational parameters. The investigations on immobilized enzymes indicated that no real shift occurred in its optimal temperature after immobilization though the activity in case of immobilized enzyme was better retained at lower temperature (5 °C). A shift of 0.5 unit was observed in optimal pH after immobilization (pH 6.5 to 7). Perhaps the most striking results are the kinetic parameters of the immobilized enzyme; while the Michaelis constant (Km) value increased almost eight times compared to the free enzyme, the maximum enzyme velocity (Vmax) remained almost constant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298529600015 Publication Date 2011-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-0229 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90060 Serial 7608  
Permanent link to this record
 

 
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
  Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 3 Issue (down) 6 Pages 1388-1395  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469258600021 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188  
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I. pdf  url
doi  openurl
  Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
  Year 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot  
  Volume 91 Issue (down) 6 Pages 1914-1922  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375768300040 Publication Date 2015-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.135 Times cited 3 Open Access  
  Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135  
  Call Number UA @ admin @ c:irua:127694 Serial 5972  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: