toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Van Hoey, S.; Seuntjens, P.; van der Kwast, J.; Nopens, I. pdf  doi
openurl 
  Title A qualitative model structure sensitivity analysis method to support model selection Type A1 Journal article
  Year (down) 2014 Publication Journal of hydrology Abbreviated Journal  
  Volume 519 Issue D Pages 3426-3435  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The selection and identification of a suitable hydrological model structure is a more challenging task than fitting parameters of a fixed model structure to reproduce a measured hydrograph. The suitable model structure is highly dependent on various criteria, i.e. the modeling objective, the characteristics and the scale of the system under investigation and the available data. Flexible environments for model building are available, but need to be assisted by proper diagnostic tools for model structure selection. This paper introduces a qualitative method for model component sensitivity analysis. Traditionally, model sensitivity is evaluated for model parameters. In this paper, the concept is translated into an evaluation of model structure sensitivity. Similarly to the one-factor-at-a-time (OAT) methods for parameter sensitivity, this method varies the model structure components one at a time and evaluates the change in sensitivity towards the output variables. As such, the effect of model component variations can be evaluated towards different objective functions or output variables. The methodology is presented for a simple lumped hydrological model environment, introducing different possible model building variations. By comparing the effect of changes in model structure for different model objectives, model selection can be better evaluated. Based on the presented component sensitivity analysis of a case study, some suggestions with regard to model selection are formulated for the system under study: (1) a non-linear storage component is recommended, since it ensures more sensitive (identifiable) parameters for this component and less parameter interaction; (2) interflow is mainly important for the low flow criteria; (3) excess infiltration process is most influencing when focussing on the lower flows; (4) a more simple routing component is advisable; and (5) baseflow parameters have in general low sensitivity values, except for the low flow criteria. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347589600057 Publication Date 2014-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:123809 Serial 7395  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: