toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, Y.; Yang, X.-Y.; Rooke, J.; Van Tendeloo, G.; Su, B.-L. doi  openurl
  Title Ultralong Cu(OH)(2) and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance Type A1 Journal article
  Year 2010 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 348 Issue 2 Pages 303-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ultralong Cu(OH)(2) and CuO nanowire bundles with lengths ranging from tens to hundreds of micrometers have been selectively synthesized on a large scale by a facile solution-phase method, using PEG200 as growth-directing agent. The growth mechanisms were investigated by monitoring the nanowire evolution process. The results showed that under the action of PEG200 molecules, the Cu(OH)(2) and CuO nanowires were first formed through oriented attachment of colloidal particles, then through side self-assembly leading to nanowire bundles, and finally to CuO nanoleaves. PEG200 plays a critical role in the synthesis of nanowires as it not only prevents the random aggregation of colloidal particles toward CuO nanoleaves but also helps to orientate nanowire growth by the coalescence and alignment in one direction of the colloidal particles. The concentration of OH(-) in the reaction system is also important for nanowire growth. In the absence of PEG200, nanoleaves are formed by an Ostwald ripening process. The band-gap value estimated from a UV-Vis absorption spectrum of CuO nanowire bundles is 2.32 eV. The photodegradation of a model pollutant, rhodamine B, by CuO nanowires and nanoleaves was compared with commercial nanopowders, showing that the as-synthesized ultralong CuO polycrystalline nanowire bundles have an enhanced photocatalytic activity with 87% decomposition of rhodamine B after an 8-h reaction, which was much higher than that of single-crystal nanoleaves (61%) and commercial nanopowders (32%). The origin of the high photocatalytic activity of these new polycrystalline CuO nanowire bundles has been discussed. This present work reveals that the (0 0 2) crystallographic surface is more favorable for photocatalytic decomposition of organic compounds and that these ultralong CuO nanowire bundles are potential candidates for photocatalysts in wastewater treatment. (C) 2010 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000279968700002 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 70 Open Access  
  Notes Approved Most recent IF: 4.233; 2010 IF: 3.068  
  Call Number UA @ lucian @ c:irua:95589 Serial 3795  
Permanent link to this record
 

 
Author Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q. pdf  doi
openurl 
  Title Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 54 Issue 10 Pages 7943-7952  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460069500043 Publication Date 2019-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 1 Open Access Not_Open_Access  
  Notes Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 2.599  
  Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158  
Permanent link to this record
 

 
Author Billet, J.; Vandewalle, S.; Meire, M.; Blommaerts, N.; Lommens, P.; Verbruggen, S.W.; De Buysser, K.; Du Prez, F.; Van Driesche, I. url  doi
openurl 
  Title Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 55 Issue 55 Pages 1933-1945  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Although already some mesoporous (2–50 nm) sol–gel TiO2 synthesis strategies exist, no pore size control beyond the 12 nm range is possible without using specialized organic structure-directing agents synthetized via controlled anionic/radical polymerizations. Here, we present the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a straightforward and industrial applicable alternative to the existing controlled polymerization methods for structure-directing agent synthesis. Poly(N,N-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) block copolymer, synthesized via RAFT, was chosen as structure-directing agent for the formation of the mesoporous TiO2. Crack-free thin layers TiO2 with tunable pores from 8 to 45 nm could be acquired. For the first time, in a detailed and systematic approach, the influence of the block size and dispersity of the block copolymer is experimentally screened for their influence on the final meso-TiO2 layers. As expected, the mesoporous TiO2 pore sizes showed a clear correlation to the polystyrene block size and the dispersity of the PDMA-b-PS block copolymer. Surprisingly, the dispersity of the polymer was shown not to be affecting the standard deviation of the pores. As a consequence, RAFT could be seen as a viable alternative to the aforementioned controlled polymerization reactions for the synthesis of structure-directing agents enabling the formation of mesoporous pore size-controlled TiO2. To examine the photocatalytic activity of the mesoporous TiO2 thin layers, the degradation of acetaldehyde, a known indoor pollutant, was studied. Even after 3 years of aging, the TiO2 thin layer retained most of its activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494929300001 Publication Date 2019-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 2 Open Access  
  Notes ; Ghent University is acknowledged for funding the research presented in this paper. M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. The authors thank Bernhard De Meyer for the SEC analysis, Hannes Rijckaert for the cross-sectional analysis, Tom Planckaert for BET analysis of the meso-TiO<INF>2</INF> powders, Jeroen Kint for the porosiellipsometry tests and Frank Driessen for the MALDI-TOF analysis. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:163842 Serial 5969  
Permanent link to this record
 

 
Author Meire, M.; Verbruggen, S.W.; Lenaerts, S.; Lommens, P.; Van Der Voort, P.; Van Driessche, I. pdf  url
doi  openurl
  Title Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity Type A1 Journal article
  Year 2016 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 51 Issue 21 Pages 9822-9829  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mesoporous titanium dioxide is a material finding its use in a wide range of applications. For many of these, it is important to achieve a high degree of crystallinity in the material. It is generally accepted that the use of the soft templating approach to synthesize mesoporous titania, results in a compromise between crystallinity and specific surface area due to thermal instability of the used templates. In this paper, we explore how the use of microwave irradiation can influence the crystallinity, specific surface area, and the electronic properties of mesoporous titania. Therefore, we combined microwave radiation with an evaporation-induced self-assembly (EISA) synthesis. We show that additional microwave treatment at carefully chosen synthesis steps can enhance the crystallinity with 20 % without causing significant loss of surface area (>360 m2/g). Surface photovoltage measurements were used to investigate the electronic properties. The photocatalytic activity of the samples was evaluated in aqueous media by following the degradation of an industrial dye, methylene blue, and the herbicide isoproturon under UV irradiation and in gaseous media looking at the degradation of acetaldehyde, a common indoor pollutant under UVA irradiation. In all cases, the microwave treatment results in more active materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381182200023 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 8 Open Access  
  Notes ; M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. We want to thank T. Planckaert for the N<INF>2</INF> sorption measurements, J. Watte for the XRD measurements, and professor K. De Buysser for the quantitative Rietveld refinements. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:140098 Serial 5970  
Permanent link to this record
 

 
Author Van Vlierberghe, S. pdf  doi
openurl 
  Title Crosslinking strategies for porous gelatin scaffolds Type A1 Journal article
  Year 2016 Publication Journal of materials science Abbreviated Journal  
  Volume 51 Issue 9 Pages 4349-4357  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The present work reports on the application and the evaluation of a multitude of crosslinking approaches including high-energy irradiation, redox-initiating systems and conventional carbodiimide-coupling chemistry for frozen and/or freeze-dried porous gelatin scaffolds. The latter is particularly relevant for a plethora of biomedical applications such as tissue engineering supports, wound dressings, adhesive and absorbent pads for surgery, etc. Moreover, the results obtained for gelatin can be considered a proof-of-concept to be extrapolated to other polymer systems containing double bonds and/or amines and carboxylic acids to also realize scaffold crosslinking in dry or frozen state. The results showed that high-energy irradiation at -5 A degrees C enabled sufficient segmental mobility to induce chemical crosslinking after performing a cryogenic treatment of methacrylamide-modified gelatin scaffolds. Alternatively, although several redox-initiating systems were unable to chemically crosslink functionalized gelatin, the combination of ammonium persulphate and TEMED resulted in the formation of scaffolds with a reasonable gel fraction. Interestingly, carbodiimide-coupling was found suitable to crosslink freeze-dried gelatin matrices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370342100016 Publication Date 2016-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:132277 Serial 7742  
Permanent link to this record
 

 
Author Tuck, L.; Sayer, M.; Mackenzie, M.; Hadermann, J.; Dunfield, D.; Pietak, A.; Reid, J.W.; Stratilatov, A.D. pdf  doi
openurl 
  Title Composition and crystal structure of resorbable calcium phosphate thin films Type A1 Journal article
  Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 41 Issue 13 Pages 4273-4284  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000239282300041 Publication Date 2006-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.599; 2006 IF: 0.999  
  Call Number UA @ lucian @ c:irua:60128 Serial 442  
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
  Year 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 46 Issue 7 Pages 2001-2008  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286633000002 Publication Date 2011-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.599; 2011 IF: 2.015  
  Call Number UA @ lucian @ c:irua:88950 Serial 446  
Permanent link to this record
 

 
Author Zelonka, K.; Sayer, M.; Freundorfer, A.P.; Hadermann, J. pdf  doi
openurl 
  Title Hydrothermal processing of barium strontium titanate sol-gel composite thin films Type A1 Journal article
  Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 41 Issue 12 Pages 3885-3897  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000239022100043 Publication Date 2006-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.599; 2006 IF: 0.999  
  Call Number UA @ lucian @ c:irua:60566 Serial 1539  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B. doi  openurl
  Title Multiple-step martensitic transformations in the Ni51Ti49 single crystal Type A1 Journal article
  Year 2010 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 45 Issue 23 Pages 6440-6445  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiple-step martensitic transformations of an aged Ni51Ti49 single crystal using calorimetric method were investigated. Results show that for short aging times (1045 min) multiple-step martensitic transformations on cooling occur in two steps. Applying intermediate aging times (1.254 h) results in three steps and long aging times (more than 8 h) lead to two-step martensitic transformations again. This behavior has not been recognized in NiTi single crystals in literatures. It can be related to the heterogeneity of composition and stress fields around Ni4Ti3 precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000282429400021 Publication Date 2010-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.599; 2010 IF: 1.859  
  Call Number UA @ lucian @ c:irua:122046 Serial 2231  
Permanent link to this record
 

 
Author Vast, L.; Carpentier, L.; Lallemand, F.; Colomer, J.-F.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.; Mekhalif, Z.; Delhalle, J. pdf  doi
openurl 
  Title Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and Youngs modulus Type A1 Journal article
  Year 2009 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 44 Issue 13 Pages 3476-3482  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sylgard®184/multiwalled carbon nanotube (MWNT) composites have been prepared by in situ polymerization using purified and functionalized multiwalled carbon nanotubes (f-MWNTs) as fillers. Surface modification of the MWNTs has been carried out by silanization with 7-octenyltrichlorosilane (7OTCS) and n-octyltrichlorosilane (nOTCS). The modification and dispersion of the carbon nanotubes in composites were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), and high-resolution transmission electron spectroscopy (HRTEM). Youngs modulus results were derived from indentation testing. It is shown that the terminal-vinyl group of 7OTCS molecules plays an essential role for both the dispersion of the f-MWNTs in the composite and its mechanical properties. At loading as low as 0.2 wt%, the Youngs modulus is shown to increase up to 50%. This is interpreted as resulting from a combination of the good compatibility in the forming silicone matrix of the MWNTs coated with a siloxane network, on the one hand, and the covalent links created between the terminal-vinyl groups and the host matrix in formation, on the other hand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000267153200022 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 16 Open Access  
  Notes Iuap Approved Most recent IF: 2.599; 2009 IF: 1.471  
  Call Number UA @ lucian @ c:irua:77844 Serial 2245  
Permanent link to this record
 

 
Author Noone, K.J.; Johnson, D.W.; Taylor, J.P.; Ferek, R.J.; Garrett, T.; Hobbs, P.V.; Durkee, P.A.; Nielsen, K.; Öström, E.; O'Dowd, C.D.; Smith, M.H.; Russell, L.M.; Flagan, R.C.; Seinfeld, J.H.; de Bock, L.; Van Grieken, R.E.; Hudson, J.G.; Brooks, I.; Gasparovic, R.F.; Pockalny, R.A. doi  openurl
  Title A case study of ship track formation in a polluted marine boundary layer Type A1 Journal article
  Year 2000 Publication Journal of the atmospheric sciences Abbreviated Journal  
  Volume 57 Issue Pages 2748-2764  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000088911800016 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4928; 1520-0469 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:31631 Serial 7582  
Permanent link to this record
 

 
Author Noone, K.J.; Öström, E.; Ferek, R.J.; Garrett, T.; Hobbs, P.V.; Johnson, D.W.; Taylor, J.P.; Russell, L.M.; Flagan, R.C.; Seinfeld, J.H.; O'Dowd, C.D.; Smith, M.H.; Durkee, P.A.; Nielsen, K.; Hudson, J.G.; Pockalny, R.A.; de Bock, L.; Van Grieken, R.E.; Gasparovic, R.F.; Brooks, I. doi  openurl
  Title A case study of ships forming and not forming tracks in moderately polluted clouds Type A1 Journal article
  Year 2000 Publication Journal of the atmospheric sciences Abbreviated Journal  
  Volume 57 Issue Pages 2729-2747  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000088911800015 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-4928; 1520-0469 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:31624 Serial 7583  
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 115 Pages 3225-3230  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428382400032 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 187 Open Access OpenAccess  
  Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918  
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R. url  doi
openurl 
  Title Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 10 Pages 5478-5485  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519530400054 Publication Date 2020-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 6 Open Access  
  Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:166452 Serial 6487  
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S. url  doi
openurl 
  Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 45 Pages 27825-27835  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590753400016 Publication Date 2020-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:174323 Serial 8107  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Claeys, P. pdf  doi
openurl 
  Title Nanodiamonds do not provide unique evidence for a Younger Dryas impact Type A1 Journal article
  Year 2011 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 108 Issue 1 Pages 40-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000285915000012 Publication Date 2010-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8424;1091-6490; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 32 Open Access  
  Notes Approved Most recent IF: 9.661; 2011 IF: 9.681  
  Call Number UA @ lucian @ c:irua:88733 Serial 2254  
Permanent link to this record
 

 
Author McCalla, E.; Abakumov, A.M.; Saubanere, M.; Foix, D.; Berg, E.J.; Rousse, G.; Doublet, M.-L.; Gonbeau, D.; Novak, P.; Van Tendeloo, G.; Dominko, R.; Tarascon, J.-M. pdf  doi
openurl 
  Title Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries Type A1 Journal article
  Year 2015 Publication Science Abbreviated Journal Science  
  Volume 350 Issue 350 Pages 1516-1521  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.  
  Address College de France, Chimie du Solide et de l'Energie, FRE 3677, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. ALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France. Reseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France. Sorbonne Universites-UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France. jean-marie.tarascon@college-de-france.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366591100056 Publication Date 2015-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 281 Open Access  
  Notes E.M. thanks the Fonds de Recherche du Québec–Nature et Technologies and ALISTORE–European Research Institute for funding this work, as well as the European community I3 networks for funding the neutron scattering research trip. This work was also funded by the Slovenian Research Agency research program P2-0148. This work is partially based on experiments performed at the Institut Laue Langevin. We thank J. Rodriguez-Carvajal for help with neutron scattering experiments and for fruitful discussions. We also thank M. T. Sougrati for performing the Sn-Mössbauer measurements. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02- 06CH11357. M.S. and M.-L.D. acknowledge high-performance computational resources from GENCI-CCRT/CINES (grant cmm6691). J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC Grant-Project670116-ARPEMA. Approved Most recent IF: 37.205; 2015 IF: 33.611  
  Call Number c:irua:130202 Serial 4005  
Permanent link to this record
 

 
Author Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L.M.; Vuković, L.; Král, P.; Bals, S.; Klajn, R. pdf  url
doi  openurl
  Title Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices Type A1 Journal article
  Year 2017 Publication Science Abbreviated Journal Science  
  Volume 358 Issue 358 Pages 514-518  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here,we show that non–close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413757500043 Publication Date 2017-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 113 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (grants 336080 CONFINEDCHEM to R.K. and 335078 COLOURATOM to S.B.), the Rothschild Caesarea Foundation (R.K.), the NSF (Division of Materials Research, grant 1506886) (P.K.), the European Commission (grant EUSMI 731019 to L.M.L.-M. and S.B.), and the startup funding from the University of Texas at El Paso (L.V.). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013- 46101-R). T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. The computer support was provided by the Texas Advanced Computing Center. All data are reported in the main text and supplementary materials. ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205  
  Call Number EMAT @ emat @c:irua:147242UA @ admin @ c:irua:147242 Serial 4770  
Permanent link to this record
 

 
Author González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D.M.; Lobato, I.; Noya, E.G.; Guerrero-Martínez, A.; Taboada, J.M.; Obelleiro, F.; MacDowell, L.G.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Micelle-directed chiral seeded growth on anisotropic gold nanocrystals Type A1 Journal article
  Year 2020 Publication Science Abbreviated Journal Science  
  Volume 368 Issue 368 Pages 1472-1477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000545264600040 Publication Date 2020-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 187 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges funding from the European Research Council (ERC AdG No. 787510). G.G.-R. and J.M. thanks the Spanish MICIU for FPI (BES-2014-068972) and Juan de la Cierva-fellowships (FJCI-2015-25080). S.B., L.M.L.-M., V.K, and A.P.- T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO). J.M.T and F.O acknowledge financial support from the Spanish MICIU (Grants TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), as well as from the ERDF and the Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). AG-M acknowledges financial support from the Spanish MICIU (Grant RTI2018-095844-BI00), EGN and LGM acknowledge funds from the Spanish MICIU (Grant No. FIS2017- 89361-C3-2-P), as well as the use of the Mare-Nostrum supercomputer and the technical support provided by Barcelona Supercomputing Center from the Spanish Network of Supercomputing (Grants QCM-2018-3-0039 and QCM-2019-1-0038). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State 13 Research Agency – Grant No. MDM-2017-0720.; sygma Approved Most recent IF: 56.9; 2020 IF: 37.205  
  Call Number EMAT @ emat @c:irua:170137 Serial 6391  
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D. url  doi
openurl 
  Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
  Year 2022 Publication Science Abbreviated Journal Science  
  Volume 375 Issue 6581 Pages 653-657  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753975300036 Publication Date 2022-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 51 Open Access OpenAccess  
  Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9  
  Call Number EMAT @ emat @c:irua:185876 Serial 6909  
Permanent link to this record
 

 
Author Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E.J.M. pdf  url
doi  openurl
  Title Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts Type A1 Journal Article
  Year 2023 Publication Science Abbreviated Journal  
  Volume 380 Issue 6650 Pages 1174-1179  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The catalytic performance of heterogeneous catalysts can be tuned by modulation of the size and structure of supported transition metals, which are typically regarded as the active sites. In single-atom metal catalysts, the support itself can strongly affect the catalytic properties. Here, we demonstrate that the size of cerium dioxide (CeO2) support governs the reactivity of atomically dispersed palladium (Pd) in carbon monoxide (CO) oxidation. Catalysts with small CeO2 nanocrystals (~4 nanometers) exhibit unusually high activity in a CO-rich reaction feed, whereas catalysts with medium-size CeO2 (~8 nanometers) are preferred for lean conditions. Detailed spectroscopic investigations reveal support size–dependent redox properties of the Pd-CeO2 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001010846100008 Publication Date 2023-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 22 Open Access OpenAccess  
  Notes We thank the staff of the MAX IV Laboratory for time on beamline SPECIES under proposals 20200412 and 20190983; E. Kokkonen and A. Klyushin for assistance with NAP-XPS and RPES experiments conducted at SPECIES; staff of the MAX IV Laboratory for time on beamline BALDER under proposal 20200378; K. Klementiev for assistance with XAS measurements; J. Drnec at the ESRF for providing assistance in using beamline ID31; and V. Perez-Dieste and I. Villar Garcia at the CIRCE beamline at ALBA Synchrotron for help with acquiring preliminary RPES data obtained under proposal 2020024219. The synchrotron-based XRD measurements were performed on beamline ID31 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. Funding: This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), a NWO Gravitation program funded by the Ministry of Education, Culture and Science of the Government of the Netherlands (V.M. and E.J.M.H.); the European Research Council (ERC consolidator grant 815128 REALNANO to S.B. and N.C.); and the European Union’s Horizon 2020 Research and Innovation Program (grant 823717–ESTEEM to S.B. and N.C). Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496 (VM). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number EMAT @ emat @c:irua:197199 Serial 8801  
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L. pdf  doi
openurl 
  Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
  Year 2017 Publication Science Abbreviated Journal Science  
  Volume 357 Issue 6347 Pages 187-190  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000405391700042 Publication Date 2017-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 87 Open Access  
  Notes ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205  
  Call Number UA @ lucian @ c:irua:144833 Serial 4730  
Permanent link to this record
 

 
Author Flynn, G.J.; Janssens, K.; Vekemans, B.; [et al.] doi  openurl
  Title Elemental compositions of comet 81P/Wild 2 samples collected by Stardust Type A1 Journal article
  Year 2006 Publication Science Abbreviated Journal Science  
  Volume 314 Issue 5806 Pages 1731-1735  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000242833600046 Publication Date 2006-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 174 Open Access  
  Notes Approved Most recent IF: 37.205; 2006 IF: 30.028  
  Call Number UA @ admin @ c:irua:61923 Serial 5603  
Permanent link to this record
 

 
Author Andreae, M.O.; Charlson, R.J.; Bruynseels, F.; Storms, H.; Van Grieken, R.; Maenhaut, W. doi  openurl
  Title Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols Type A1 Journal article
  Year 1986 Publication Science Abbreviated Journal  
  Volume 232 Issue 4758 Pages 1620-1623  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Individual aerosol particles from the remote marine atmosphere were investigated by scanning electron microscopy and electron microprobe analysis. A large fraction of the silicate mineral component of the aerosol was found to be internally mixed with sea-salt aerosol particles. This observation explains the unexpected similarity in the size distributions of silicates and sea salt that has been observed in remote marine aerosols. Reentrainment of dust particles previously deposited onto the sea surface and collision between aerosol particles can be excluded as possible source mechanisms for these internally mixed aerosols. The internal mixing could be produced by processes within clouds, including droplet coalescence. Cloud processes may also be responsible for the observed enrichment of excess (nonsea-salt) sulfate on sea-salt particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1986C826900027 Publication Date 2006-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113613 Serial 8116  
Permanent link to this record
 

 
Author Monai, M.; Jenkinson, K.; Melcherts, A.E.M.; Louwen, J.N.; Irmak, E.A.; Van Aert, S.; Altantzis, T.; Vogt, C.; van der Stam, W.; Duchon, T.; Smid, B.; Groeneveld, E.; Berben, P.; Bals, S.; Weckhuysen, B.M. pdf  url
doi  openurl
  Title Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis Type A1 Journal article
  Year 2023 Publication Science Abbreviated Journal  
  Volume 380 Issue 6645 Pages 644-651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400 degrees C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600 degrees C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000999020900010 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 29 Open Access OpenAccess  
  Notes This work was supported by BASF and NWO CHIPP (research grant to B.M.W.); the MCEC NWO Gravitation Program (B.M.W.); the ARC-CBBC NWO Program (B.M.W.); the European Research Council (grant 770887 PICOMETRICS to S.V.A.); and the European Research Council (grant 815128 REALNANO to S.B.). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number UA @ admin @ c:irua:197432 Serial 8923  
Permanent link to this record
 

 
Author Boneschanscher, M.P.; Evers, W.H.; Geuchies, J.J.; Altantzis, T.; Goris, B.; Rabouw, F.T.; van Rossum, S.A.P.; van der Zant, H.S.J.; Siebbeles, L.D.A.; Van Tendeloo, G.; Swart, I.; Hilhorst, J.; Petukhov, A.V.; Bals, S.; Vanmaekelbergh, D.; pdf  url
doi  openurl
  Title Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices Type A1 Journal article
  Year 2014 Publication Science Abbreviated Journal Science  
  Volume 344 Issue 6190 Pages 1377-1380  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands like graphene, but also strong spin-orbit coupling. The two-dimensional assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in two-dimensional (2D) metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent, and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000337531700035 Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 304 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205; 2014 IF: 33.611  
  Call Number UA @ lucian @ c:irua:117095 Serial 1840  
Permanent link to this record
 

 
Author Amelinckx, S.; Bernaerts, D.; Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J. pdf  doi
openurl 
  Title A structure model and growth mechanism for multishell carbon nanotubes Type A1 Journal article
  Year 1995 Publication Science Abbreviated Journal Science  
  Volume 267 Issue Pages 1334-1338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1995QK06800041 Publication Date 2006-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 33.611 Times cited 169 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:13309 Serial 3305  
Permanent link to this record
 

 
Author Lok, J.G.S.; Geim, A.K.; Maan, J.C.; Marmorkos, I.; Peeters, F.M.; Mori, N.; Eaves, L.; McDonnell, P.; Henini, M.; Sakai, J.W.; Main, P.C. openurl 
  Title Resonant tunneling through D- states Type A1 Journal article
  Year 1996 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 361/362 Issue Pages 247-250  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UZ03300061 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0039-6028 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 1.925 Times cited Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:15813 Serial 2894  
Permanent link to this record
 

 
Author Nematollahi, P.; Esrafili, M.D.; Neyts, E.C. pdf  url
doi  openurl
  Title The role of healed N-vacancy defective BC2N sheet and nanotube by NO molecule in oxidation of NO and CO gas molecules Type A1 Journal article
  Year 2018 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 672-673 Issue 672-673 Pages 39-46  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, the healing of N-vacancy boron carbonitride nanosheet (NV-BC2NNS) and nanotube (NV-BC2NNT) by NO molecule is studied by means of density functional theory calculations. Two different N-vacancies are considered in each of these structures in which the vacancy site is surrounded by either three B-atoms (NB) or by two B- and one C-atom (NBC). By means of the healed BC2NNS and BC2NNT as a support, the removal of two toxic gas molecules (NO and CO) are applicable. It should be noted that the obtained energy barriers of both healing and oxidizing processes are significantly lower than those of graphene, carbon nanotubes or boron nitride nanostructures. Also, at the end of the oxidation process, the pure BC2NNS or BC2NNT is obtained without any additional defects. Therefore, by using this method, we can considerably purify the defective BC2NNS/BC2NNT. Moreover, according to the thermochemistry calculations we can further confirm that the healing process of the NV-BC2NNS and NV-BC2NNT by NO are feasible at room temperature. So, we can claim that this study could be very helpful in both purifying the defective BC2NNS/BC2NNT while in the same effort removing toxic NO and CO gases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000432614700007 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0039-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.062  
  Call Number UA @ lucian @ c:irua:151478 Serial 5044  
Permanent link to this record
 

 
Author Bafekry, A.; Shahrokhi, M.; Yagmurcukardes, M.; Gogova, D.; Ghergherehchi, M.; Akgenc, B.; Feghhi, S.A.H. pdf  url
doi  openurl
  Title Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Surface Science Abbreviated Journal Surf Sci  
  Volume 707 Issue Pages 121796  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural, electronic, optic and vibrational properties of Zinc antimonide (ZnSb) monolayers and their func-tionalized (semi-fluorinated and fully chlorinated) structures are investigated by means of the first-principles calculations. The phonon dispersion curves reveal the presence of imaginary frequencies and thus confirm the dynamical instability of ZnSb monolayer. The calculated electronic band structure corroborates the metallic character with fully-relativistic calculations. Moreover, we analyze the surface functionalization effect on the structural, vibrational, and electronic properties of the pristine ZnSb monolayer. The semi-fluorinated and fully-chlorinated ZnSb monolayers are shown to be dynamically stable in contrast to the ZnSb monolayer. At the same time, semi-fluorination and fully-chlorination of ZnSb monolayer could effectively modulate the metallic elec-tronic properties of pristine ZnSb. In addition, a magnetic metal to a nonmagnetic semiconductor transition with a band gap of 1 eV is achieved via fluorination, whereas a transition to a semiconducting state with 1.4 eV band gap is found via chlorination of the ZnSb monolayer. According to the optical properties analysis, the first ab-sorption peaks of the fluorinated-and chlorinated-ZnSb monolayers along the in-plane polarization are placed in the infrared range of spectrum, while they are in the middle ultraviolet for the out-of-plane polarization. Interestingly, the optically anisotropic behavior of these novel monolayers along the in-plane polarizations is highly desirable for design of polarization-sensitive photodetectors. The results of the calculations clearly proved that the tunable electronic properties of the ZnSb monolayer can be realized by chemical functionalization for application in the next generation nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626633500001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0039-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.062  
  Call Number UA @ admin @ c:irua:177623 Serial 7026  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: