|
Record |
Links |
|
Author |
Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L.M.; Vuković, L.; Král, P.; Bals, S.; Klajn, R. |
|
|
Title |
Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Science |
Abbreviated Journal |
Science |
|
|
Volume |
358 |
Issue |
358 |
Pages |
514-518 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here,we show that non–close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000413757500043 |
Publication Date |
2017-10-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0036-8075 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
37.205 |
Times cited |
113 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the European Research Council (grants 336080 CONFINEDCHEM to R.K. and 335078 COLOURATOM to S.B.), the Rothschild Caesarea Foundation (R.K.), the NSF (Division of Materials Research, grant 1506886) (P.K.), the European Commission (grant EUSMI 731019 to L.M.L.-M. and S.B.), and the startup funding from the University of Texas at El Paso (L.V.). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013- 46101-R). T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. The computer support was provided by the Texas Advanced Computing Center. All data are reported in the main text and supplementary materials. ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); |
Approved |
Most recent IF: 37.205 |
|
|
Call Number |
EMAT @ emat @c:irua:147242UA @ admin @ c:irua:147242 |
Serial |
4770 |
|
Permanent link to this record |