toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author McCalla, E.; Abakumov, A.M.; Saubanere, M.; Foix, D.; Berg, E.J.; Rousse, G.; Doublet, M.-L.; Gonbeau, D.; Novak, P.; Van Tendeloo, G.; Dominko, R.; Tarascon, J.-M. pdf  doi
openurl 
  Title Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries Type A1 Journal article
  Year (down) 2015 Publication Science Abbreviated Journal Science  
  Volume 350 Issue 350 Pages 1516-1521  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.  
  Address College de France, Chimie du Solide et de l'Energie, FRE 3677, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. ALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France. Reseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France. Sorbonne Universites-UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France. jean-marie.tarascon@college-de-france.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366591100056 Publication Date 2015-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 281 Open Access  
  Notes E.M. thanks the Fonds de Recherche du Québec–Nature et Technologies and ALISTORE–European Research Institute for funding this work, as well as the European community I3 networks for funding the neutron scattering research trip. This work was also funded by the Slovenian Research Agency research program P2-0148. This work is partially based on experiments performed at the Institut Laue Langevin. We thank J. Rodriguez-Carvajal for help with neutron scattering experiments and for fruitful discussions. We also thank M. T. Sougrati for performing the Sn-Mössbauer measurements. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02- 06CH11357. M.S. and M.-L.D. acknowledge high-performance computational resources from GENCI-CCRT/CINES (grant cmm6691). J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC Grant-Project670116-ARPEMA. Approved Most recent IF: 37.205; 2015 IF: 33.611  
  Call Number c:irua:130202 Serial 4005  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: