toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, L. openurl 
  Title Characteristic diagnosis of atmospheric discharge plasma and kinetics study of reactive species Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 148 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasma has received extensive attention due to its promising application prospects in the field of air pollutants degradation and energy conversion. To fulfill the need for particular applications, constructing stable plasma sources and investigating the interaction mechanisms between plasma and substances have been hot research topics. This thesis reports the diagnosis and improvement of plasma sources, diagnosis of the active species in plasma and a modeling study of chemical kinetics processes. The main research contents are as follows: In Chapter 3, a diffuse sine AC dielectric barrier discharge (DBD) is successfully obtained by optimizing the electrode structure. It is found that using double-layer dielectric plates can limit the discharge current intensity and significantly improve the discharge uniformity. The electrical characteristics and gas temperature with different operating time show that the discharge stability is also improved by using double-layer dielectric plates. In Chapter 4, nanosecond pulses are employed to generate diffuse DBD plasmas. Three main discharge stages are distinguished by ICCD images, i.e., the streamer breakdown from the needle tip to the plate electrode, the regime transition from streamer to diffuse plasma, and the propagation of surface discharge on the plate electrode surface. The chapter reveales that in nanosecond pulsed discharges the vibrational temperature of N2 increases with the discharge duration, while the rotational temperature mainly stays constant, which means electron energy is transferred into the vibrational levels, but gas heating is not obvious during the discharge pulse. In Chapter 5, both sine AC DBD and nanosecond pulsed DBD, studied in Chapter 2 and 3, are used for formaldehyde degradation. It is found that nanosecond pulsed DBD has more homogenous characteristics, better stability, and lower plasma gas temperature. Moreover, the energy consumption of nanosecond pulsed DBD is much lower than that of AC DBD. In Chapter 6, a 0D chemical kinetics model is developed to investigate the underlying plasma chemistry of methane dry reforming in a nanosecond pulsed discharge. An overview of the dominant reaction pathways of CO2 and CH4 conversion into the major products is given. Furthermore, most of the CO2 molecules are populated into vibrational states during the pulse. Hence, the vibrational states of CO2 play an important role in its dissociation process. In general, this PhD thesis contributes to a better insight in the mechanisms of sinusoidal AC DBD and nanosecond pulsed DBD plasmas and their applications, i.e., decomposition of formaldehyde and dry reforming of methane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183166 Serial 7605  
Permanent link to this record
 

 
Author Alemam, E. url  openurl
  Title Cleaning of wall paintings by Polyvinyl alcohol–Borax/Agarose (PVA–B/AG) double network hydrogels : characterization, assessment, and applications Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 184 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Wall paintings make up an important section of cultural heritage. They resemble time portals that can be used to travel back into the past and witness the life of our ancestors. In these paintings, the ancient artists depicted the different aspects of their life, such as cooking, baking, farming, manufacturing, as well as thoughts and beliefs. Unfortunately, wall paintings are susceptible to degradation over time in the form of the accumulations of dirt and deposits on the painted surfaces and loss of adhesion of the paint layers at the surface. Therefore, the removal of these deposits is one of the primary duties of conservator-restorers. Such operations are intended to restore the painted surface to a condition close enough to its original state. Since cleaning artworks may cause undesirable physicochemical alterations and is nonreversible, the proper cleaning procedure should be adopted. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, polyvinyl alcohol-borax (PVA-B) and agarose (AG) hydrogels have been widely employed as cleaning materials by conservator-restorers. However, both hydrogels have shown limitations in specific cleaning practices. In this work, we investigated a new double network hydrogel based on blending PVA-B and agarose to avoid the limitations posed by the constituting hydrogels. For this reason, a detailed characterization of the PVA–B/AG double network hydrogel was performed, including chemical structure, liquid phase retention, mechanical strength, rheological behavior, and self-healing behavior of various PVA-B/AG hydrogels. These new hydrogels revealed better properties than PVA-B and agarose hydrogels and obviated their limitations. A laboratory experiment on the removal of deteriorated Paraloid® B72 proved that the PVA-B/AG hydrogel loaded 10%/10% MEK/1-PeOH was able to remove these layers efficiently. Therefore, the hydrogel was tested on a wall painting from the Temple of Seti I in Abydos – Egypt. It removed the glossy/darkened consolidant from the wall painting and restored the original matt appearance of the painted surface. In another application on the painted ceiling of the same temple, the hydrogel was tested for removing thick soot layers. The hydrogel formulation (loaded with 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA) removed these layers with no noticeable damage to the paint layers. In a wide-scale application of the hydrogel (loaded with 10% propylene carbonate), it removed a highly deteriorated varnish layer from a 19-c wall painting. All the traditional cleaning methods employed caused damage to the paint layers, proving that gel cleaning can be a safer cleaning alternative in some cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183381 Serial 7671  
Permanent link to this record
 

 
Author Blidar, A.-M. url  openurl
  Title The development of sensitive and selective electrochemical methods for the detection of antibiotics Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 139 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The discovery of antibiotics represented one of the greatest breakthroughs in medicine. Their success combined with an increasing intensive use is apparently bound to be also their undoing. This is due to the development of acquired antibiotic resistance, leading to inefficient antibiotherapy and even to the impossibility of treatment and death. The development and spread of antibiotic resistance are fueled by the widespread presence of trace levels of antibiotics residue, in various media, from environment to aliments. One of the solutions is the rigorous monitoring of the levels of antibiotics, which in term requires an almost constant development of new, more accessible analytical methods, especially screening methods, capable of decentralized analysis. In this direction, the electrochemical detection of antibiotics represents a very viable alternative. In this context, the aim of this thesis was to develop new electrochemical methods for the detection of antibiotics by employing and expanding on several strategies, like biomimetic sensors and electrochemical fingerprinting. Five studies were described in this thesis, that can be roughly divided in three categories, based on the analytical strategy employed. The first group is represented by direct electrochemical methods. The second group focuses on the use of biomimetic elements, molecularly imprinted polymers and aptamers. The hyphenation of electrochemical methods with other analytical methods was explored in the last group. In the last study, included in this group, the singlet oxygen-based photoelectrochemical approach was used for the detection of a phenolic antibiotic, rifampicin. The originality of the thesis consists in the testing and development of new approaches to various strategies used in electrochemical detection, revealing new insights in the field of electrochemical detection of antibiotics. The complex electrochemical fingerprint and the mechanism of the electrochemical oxidation were created and investigated, respectively, for the antibiotic vancomycin. New sensitive nanoplatforms were prepared by employing and combining new protocols. Additionally, important contributions were brought through the study involving the singlet oxygen-based detection of rifampicin. We demonstrated how a photocatalyst can exhibit analyte selectivity by strongly interacting with a complex phenolic compound, rifampicin. Summing up, the studies presented in this thesis will have an important impact in the field of electrochemical detection of antibiotics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182955 Serial 7804  
Permanent link to this record
 

 
Author Muhammad, S.; Wuyts, K.; De Wael, K.; Samson, R. url  doi
openurl 
  Title Does leaf micro-morphology influence the recognition of particles on SEM images? Type A3 Journal article
  Year 2021 Publication International Journal of Environmental Pollution and Remediation Abbreviated Journal  
  Volume 9 Issue Pages 22-37  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Scanning electron microscopy (SEM) remains a popular approach to determine the shape, size, density and elemental composition of particles collected on leaf surfaces, but the effect of leaf micro-morphology on particle counts is not very well known. In this study, leaves of sixteen urban plant species were examined for particle density in June and September 2016 using SEM. The investigated plant species differed in leaf micro-morphology involving trichomes, raised stomata, epicuticular wax crystals and convex epidermal cells forming deep grooves between cells. The particle density on leaves of the investigated plant species was estimated by particle size fraction and leaf side. Particle density was significantly higher on the adaxial (AD) leaf side compared to the abaxial (AB) leaf side and higher for fine-particles than coarse-particles. The effect of trichome density on particle density of the AB and the AD leaf side was indicated to be significant and positive for both coarse and fine-particles in June but not in September. The successive repeated measurements elucidated that features constructing the topography of a leaf surface such as trichomes, stomata, and epidermal cells frequently contributed towards the edge enhancement effect, resulting in exaggerated particle counts. Besides, the mechanical drift contributed to the disparity in particle density measurements. Lastly, the reduction in particle density between successive measurements were imputed on the charging effect. These results enable us to suggest that in addition to characterization of micro-morphological features on a leaf surface, SEM will continue to be a useful approach for determining the particle: shape, size, elemental composition and density of the deposited particles. Nonetheless, the disparity in particle density measurements can occur due to abnormal particle recognition. Based on the results of September, we recommend that within-session successive repeated measurements (~ n ≥ 5) need to be performed to remove measurement uncertainties and obtain reliable quantitative data of particle counts using SEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181797 Serial 7822  
Permanent link to this record
 

 
Author Shaw, P. url  openurl
  Title Dual action of reactive species as signal and stress agents in plasma medicine : combined computational and experimental research Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 191 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Reactive oxygen and nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can activate discrete signaling transduction pathways or disrupt redox cellular homeostasis, depending on their concentration. This makes that CAP possesses therapeutic potential towards wound healing, cancer, and other diseases. In order to effectively use CAP in the clinic, a clear understanding of the interaction of RONS with biomolecules (lipids, proteins and nucleic acids) from the atomic to the macro scale, and their biological significance, is needed. In this work, I have therefore studied the dual role of CAP-derived RONS, i.e., (i) in the signaling pathways involved in wound healing, and (ii) in their reaction with biomolecules to cause oxidation-mediated damage. I performed computer simulations to provide fundamental insight about the occurring processes that are difficult or even impossible to obtain experimentally. Furthermore, next to computational studies, I used both 2D and 3D tissue cultures. 3D model allows proliferation in a more physiologically relevant geometry that stimulates the production of extracellular matrix proteins. I investigated the treatment of human gingival fibroblasts with low doses of CAP-generated RONS. This treatment demonstrated that it can inhibit colony formation but does not induce cell death, induce the expression of metalloprotease proteins, induce extracellular matrix degradation, and promote cell migration, which could result in enhanced wound healing. In contrast, at high concentrations, RONS can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. I discovered how oxidation of the cell membrane (lipid-peroxidation) can facilitate the access of a drug (Melittin) into cancer cells, and in this way, reduce the required therapeutic dose of Melittin in melanoma and breast cancer cells (demonstrated using in vitro, in ovo and in silico approaches). Furthermore, I studied how excessive lipid-oxidation in chemoresistant pancreatic cancer cells promotes ferroptotic cell death. This was due to the stimulation of the iron-dependent Fenton reaction by targeting a redox specific signaling network. However, upon oxidative stress, cells protect themselves via a sophisticated intracellular antioxidant system that involves the regulation of glutathione/glutathione peroxidase 4 (lipid repair enzyme). Cancer cells exhibited increased levels of intracellular RONS due to their hyper metabolism, leading to high expression of anti-oxidant systems. I therefore focus on the effect of reactive species on the intracellular anti-oxidant system and corresponding DNA damages in both temozolomide-sensitive as well as temozolomide-resistant glioblastoma spheroids, in a 3-dimensional tumor model with a more complex tumor microenvironment than cell monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183751 Serial 7828  
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. url  doi
openurl 
  Title Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 10 Pages 10618-10626  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711236300022 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181953 Serial 7853  
Permanent link to this record
 

 
Author Gielis, J. openurl 
  Title Er bestaan geen absurde, irrationele, onregelmatige of onderling niet-onmeetbare meetkundige getallen Type A2 Journal article
  Year 2021 Publication Wiskunde en onderwijs Abbreviated Journal  
  Volume 47 Issue 188 Pages 23-33  
  Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2032-0485 ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183083 Serial 7934  
Permanent link to this record
 

 
Author Cui, Z. file  openurl
  Title Experimental and theoretical study on SF6 degradation by packed-bed DBD plasma Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Sulfur hexafluoride (SF6), as a man-made gas, is widely used in power industry, semiconductor industry and metal-processing industry. However, SF6 is a greenhouse gas and its global warming potential is 23500 times that of CO2. Besides, SF6 is very stable, with a lifetime in the atmosphere for more than one thousand years. Under natural conditions, only the ultraviolet light can make it slowly decomposed. Thus, the emission of SF6 has a great threat to the environment. In recent years, with the development of our national economy, the use of SF6 increased dramatically. And 90% of the SF6 emissions come from the power industry. In the meantime, the emission of SF6 exists a ‘hysteresis effect’, as many of the SF6-gas insulation equipment will retire in next decades, the emission of SF6 may increase sharply, and this may put great pressure on the environment. Therefore, it’s necessary to make efforts in controlling and treating the SF6 emission. Among the SF6 abatement technologies, the non-thermal plasma(NTP) represented by the dielectric barrier discharge(DBD) can effectively degrade SF6 and is suitable for large-scale industry applications. However, its energy efficiency still gets room for improvement and this kind of method has a defect that it’s hard to regulate the degradation by-products. Therefore, this paper proposed the combination of the packed bed reactor and the DBD technology to form a packed DBD discharge system for SF6 degradation, so that to further improve the energy efficiency and regulate the selectivity of by-products. By experiment and simulation research, the following innovations have been achieved: (1) Based on the packed bed DBD platform, the power parameter and gas-phase parameters of SF6 degradation were studied. It was found that the discharge process was significantly enhanced with the addition of packing particles, and the discharge energy efficiency was improved. The increase of input voltage can obviously increase the degradation rate, but reduces the energy efficiency. The increase of SF6 initial concentration and gas flow rate can improve the energy efficiency, but reduce the degradation rate. Therefore, both degradation rate and energy efficiency should be considered in deciding basic experimental conditions. (2) Active gases, such as O2, H2O and NH3, could effectively promote the degradation rate of SF6, and changed the product selectivity. In our packed bed DBD system, O2 and H2O have the optimal concentration conditions, which are 2% and 1%, respectively. The addition of O2 can promote the generation of S-O-F products, and inhibit the selectivity of SO2, while the addition of H2O had the opposite effects. In addition, the synergistic degradation of NH3 and SF6 will produce solid products, such as NH3HF, NH4HF2 and elemental S. For gaseous products, the increase of NH3 will lead to the generation of SO2 in the final degradation products and inhibit the generation of S-O-F products. (3) Different kinds of packing materials have great impacts on the degradation system in the discharge parameters, degradation rate and energy efficiency, as well as the products distribution. In the experiment, we compared the degradation results in three systems: glass beads packing, γ-Al2O3 packing and no-packing system. The packing of glass beads effectively improved the discharge voltage amplitude and discharge power, while had a limited effect on the equivalent capacitance of the dielectric. Besides, γ-Al2O3 packing had little effect on voltage amplitude, but obviously increased the equivalent capacitance of the dielectric. Furthermore, the degradation rate and energy efficiency in γ-Al2O3 system was higher than that of glass bead system. For products selectivity, γ-Al2O3 system was more desirable, where S-O-F type of product selectivity was suppressed and the SO2 selectivity increased significantly. By contrast, the glass beads system hardly affected the product selectivity. This results are presumably due to the relatively high dielectric constant of γ-Al2O3 particles and γ-Al2O3 itself may act as a reactant or a catalyst participating in the degradation reactions. (4) The size and status of the packing particles also have significant effects on the degradation process. The systems packed with 1, 2 and 4mm γ-Al2O3 particles for SF6 degradation were compared, and the 2mm system had the best performance, which may because the 2mm system had a good balance between the active contact area and the gas residence time. In addition, the packing pellets suffered from a hydration process slightly reduced the discharge parameters in the γ-Al2O3 packing system and significantly reduced the degradation rate was, which may because the H2O molecules pre-occupied the active sites on the γ-Al2O3 surface and reduced the discharge process. (5) Based on density functional theory (DFT), the degradation process of SF6 in the packed bed DBD system was studied at atomic scale. It was found that the SF6 can occur a physical adsorption at AlⅢ active sites on γ-Al2O3 surface. The activation barrier for the first degradation step of SF6 on γ-Al2O3 surface is much lower than in gas phase, which proved that the SF6 molecule is activated on the γ-Al2O3 surface. In addition, the plasma may affect the γ-Al2O3 surface to generate excess electrons or external electric fields. This two effects can change the adsorbed SF6 molecules from physical adsorption to chemisorption, together with an obvious stretching of S-F bonds, indicating that the plasma surface effects prmote the activation and decomposition of SF6 molecules. Furthermore, the stepwise degradation process of SF6 on γ-Al2O3 surface were investigated. The influence of radicals produced by plasma on the degradation process was analyzed. It was found that via Eley–Rideal (ER) reactions, high-energy radicals could effectively reduce the activation barriers and promote the surface reactions. Finally, the degradation mechanism of SF6 molecules in the packed bed plasma system was summarized, which may provide a theoretical basis for the study of harmless degradation of SF6. Keywords: SF6; Packed Bed DBD; Discharge Parameters; Products Analysis; Degradation Mechanism  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180819 Serial 7946  
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author Chapman, D.; Gielis, J. doi  openurl
  Title Gielis transformations for the audiovisual geometry database Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 177-180  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This publication introduces the audiovisual geometry database with Gielis transformations as initial records for a prototype of the database. A concise overview is given of the rationale behind the database and studying wave phenomena with Gielis transformations. First results on a form of timbral polyphony observed in Gielis curves and future work are briefly discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180965 Serial 8004  
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M. url  doi
openurl 
  Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 41 Issue Pages 69-107  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000685118300009 Publication Date 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178744 Serial 8045  
Permanent link to this record
 

 
Author Aucar Boidi, N.; Fernández García, H.; Nunez-Fernandez, Y.; Hallberg, K. url  doi
openurl 
  Title In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction Type A1 Journal article
  Year 2021 Publication Physical review research Abbreviated Journal  
  Volume 3 Issue 4 Pages 043213  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000736651500002 Publication Date 2021-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184836 Serial 8073  
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Beirinckx, B.; Caratelli, D.; Ricci, P.E. file  openurl
  Title Lamé-Gielis curves in biology and geometry Type P3 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178828 Serial 8145  
Permanent link to this record
 

 
Author Zhu, W. url  openurl
  Title Microbial resource management for mainstream partial nitritation/anammox : strategies to enhance the nitrogen conversion efficiency Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 207 p.  
  Keywords Doctoral thesis; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This thesis provides three potential ways to enhance the nitrogen removal efficiency of mainstream partial nitritation/anammox (PN/A), a key technology to enable energy-positive sewage treatment. In Chapter 1, the typical technologies to promote nitrogen removal efficiency are summarized. In Chapters 2 and 3, the concept ‘winter bioaugmentation with stored summer surplus sludge’ is proposed. Applying that, a cost-effective sludge preservation strategy is required. Preserving PN/A biomass without cooling and redox adjustment proved to be the cost-effective strategy. The reactivation of these stored sludges was also tested in low-temperature systems (15 and 10℃). Respectively 56% and 41% of granules activity compared to pre-storage activity (after Arrhenius-based temperature correction) could be recovered within a month (41% and 32% for flocs activity). In the end, the stored AnAOB bioaugmentation was successfully validated in the lab (20℃). In Chapter 4, a return-sludge nursery concept, applying the sidestream nitritation and blending the resulting effluent with mainstream effluent to achieve an intermediate temperature and nitrogen concentrations, is proposed. That led to a 33 – 36% increase in nitrogen removal efficiency. Arrhenius’ expectations (10 ℃ higher temperature, θ = 1.09) could only explain 49-51% of the activity increase in the nursery reactor, pointing to the role of other factors, e.g., the ~400% elevated electrical conductivity (15-16%), the 56-335% higher effluent nitrogen concentrations (12-14%), and the synergy and unknown factors (20-23%). Thus, the return-sludge biostimulation approach could also enhance nitrogen efficiency in the mainstream. In Chapter 5, the N2O emissions, linked to three typical nitrite-oxidizing bacteria (NOB) suppression strategies (low dissolved oxygen (DO) level, free ammonia (FA), and free nitrous acids (FNA) treatments) were tested in a biofilm system. A low emerged DO level (~0.60 mg O2 L-1) was effective to suppress NOB activity and decrease N2O emissions, but NOB adaptation gradually appeared after 200 days. Further NOB inhibition was successfully achieved by periodical (3 hours per week) FA (~30 mg NH3-N L-1) or FNA (~3 mg HNO2-N L-1) treatments. The FA treatment promoted N2O production, while the FNA treatment had no effect. Thus, PN/A systems should be operated at relatively low DO levels with periodical FNA treatment. In Chapter 6, the major findings proposed and the main conclusions drawn in this thesis are outlined. Beyond that, the possible design of a mainstream PN/A configuration that combined all described three technologies is demonstrated. Overall, the novel insights from this thesis potential to improve nitrogen removal efficiency in the mainstream.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184236 Serial 8245  
Permanent link to this record
 

 
Author Gielis, J.; Ricci, P.E.; Tavkhelidze, I. pdf  url
doi  openurl
  Title The Möbius phenomenon in Generalized Möbius-Listing surfaces and bodies, and Arnold's Cat phenomenon Type A1 Journal article
  Year 2021 Publication Advanced Studies : Euro-Tbilisi Mathematical Journal Abbreviated Journal  
  Volume 14 Issue 4 Pages 17-35  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. Our research is motivated by this reduction of complexity. In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin. The Möbius phenomenon is important, since the process of cutting (or separation of zones in a GML body in general) then results in a single body, not in different, intertwined domains. In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenomenon to occur. Several examples are given to illustrate this.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000774655100002 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183081 Serial 8258  
Permanent link to this record
 

 
Author Wagaarachchige, J.; Idris, Z.; Kummamuru, N.B.; Sætre, K.A.; Halstensen, M.; Jens, K.-J. url  doi
openurl 
  Title A new sulfolane based solvent for CO₂ capture Type P1 Proceeding
  Year 2021 Publication SSRN electronic journal Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study presents novel sulfolane based non-aqueous CO2 capture solvents, as an alternative solution for capturing CO2 from industrial processes. In order to select the most promising amine system, five different amines were tested by monitoring CO2 absorption and desorption processes using the time-base Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. During absorption experiments, we observed the formation of Monomethyl Carbonate (MMC) in diisopropylamine (DIPA) and 2-amino-2-methyl-1-propanol (AMP) systems, while carbamate was observed as the main product for the other three amine systems tested. In regeneration experiments, the MMC could be desorbed relatively easily from the amine solution at a mild temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180364 Serial 8305  
Permanent link to this record
 

 
Author Marchetti, A. url  openurl
  Title Novel insights and approaches for the analytical characterization of tangible cultural heritage objects Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 333 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Cultural heritage represents the vehicle of our cultural identity, handed over from past to future generations throughout human history. As a repository of fundamental cultural and social values, the preservation of all forms of cultural heritage is a responsibility of every society and of humankind as a whole. When it comes to tangible cultural heritage, preservation of heritage translates into preservation of objects and, therefore, of the materials they are constituted of. This crucial task relies heavily on the application of scientific analytical methods to answer material and conservation-related questions. ​ ​ The fundamental contribution of this analytical approach led, in the past decades, to an ever-deepening understanding of the factors governing the degradation of cultural heritage. However, the extreme complexity of the heritage object-environment system results in a massive research field, which inevitably presents relevant open questions. This is where the present PhD work comes into play, attempting to fill knowledge gaps in literature by starting from specific case studies and un-answered research questions. ​ ​ The multianalytical research conducted during this PhD unraveled fundamental information on the properties governing the reactivity and long-term behavior of different classes of materials, from α-brass in an indoor environment to artists’ pigments in the presence of light, moisture and soluble particulate matter (PM). The paramount importance of the synthesis conditions on the composition, physical properties and reactivity of heritage materials was also demonstrated, in particular for stable lead pyroantimonate and unstable Geranium lake artists’ pigments. Moreover, the study and characterization of specific heritage objects, namely a series of 16th century reliquary altarpieces and the painting L’Arlesienne, by Vincent Van Gogh, allowed to obtain relevant insights into their composition and on potential risks for their conservation. The challenging nature of the samples considered, created the perfect opportunity to test an innovative spectroscopic technique, optical photo-thermal IR (O-PTIR), for the characterization of heritage materials. Striking results were obtained, highlighting a great potential for the application of this non-destructive sub-micron molecular spectroscopy to the analysis of cultural heritage. Finally, in the last section of this work, strategies to implement the continuous monitoring of PM levels in indoor environmental quality studies were also considered, with a particular focus on the identification of environmental hazards for the collections housed in specific conservation environments (War Heritage Institute in Brussels and St. Martin’s church in Aalst, BE).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177849 Serial 8319  
Permanent link to this record
 

 
Author Cong, S. file  openurl
  Title Numerical study on low-pressure hollow cathode argon arc plasma Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XIX, 126 p.  
  Keywords Doctoral thesis; Philosophy; Educational sciences; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The low-pressure hollow cathode discharge made of a hollow circular tube and an anode is a type of simple structure discharge system. In particular, under the arc discharge mode, hollow cathodes have high plasma density and energy density with a wide range of adaptability of pressure and current. Low-pressure hollow cathode arc (HCA) discharges have been widely used as plasma sources in various fields such as manufacturing, vacuum welding, and aerospace since the 1960s. Despite the early experimental and applied researches on low-pressure HCA discharges, the basic theoretical study was relatively lagged much behind, resulting in many unanswered questions, such as the optimal discharge operating parameters, the power deposition inside the cathode, the causes of plasma instability, and how to effectively reduce cathode erosion and so on. Due to the special discharge structure of the hollow cathode, it is difficult to make an accurate experimental diagnosis, so a reasonable numerical simulation is an effective study method. However, up to now, there is still a lack of complete and effective numerical models which can evaluate various physical fields in the low-pressure hollow cathode discharges. To address the above problems and difficulties, a comprehensive and self-consistent 2D multi-physical coupling numerical model based on a commercial program of finite element method, the COMSOL Multiphysics, was provided in this paper. The model involves plasma transport, arc flow and heat transfer, and cathode thermal equilibrium, and can consider the effect of an applied magnetic field. The processes of secondary electron emission, thermal-field electron emission, ions and backflow high-energy electrons bombardment, and thermal radiation from the cathode surface are considered in the cathode thermal equilibrium process. Based on the above background, this paper works from the following aspects: In Chapter 1, the basic concepts of low-pressure HCA discharge including the hollow cathode effect, the basic characteristics, and operation modes were introduced firstly; Secondly, the application fields, development history, and overseas and domestic research status of hollow cathode discharge were reviewed; finally, the problems were presented and the research background was explained, and the research purpose of this paper was clarified. In Chapter 2, a complete and self-consistent numerical model of low-pressure hollow cathode discharge was proposed based on the fundamental theory and assumptions, and the set of control equations and boundary conditions in the model were elaborated. In addition, the electron energy distribution function, the collision processes, the solving tools of this model, and calculation schemes were introduced in detail. Finally, a validation example was given to test the rationality and applicability of the numerical model. In Chapter 3, the fundamental plasma properties of low-pressure hollow cathode arcs were investigated. Firstly, the ion Joule heating effect was studied. The results showed that the temperature distributions of the arc and cathode are only able to approach the experimental measurements after considering the ion Joule heating, which shows that the Joule heating of ions is crucial for the heating of the arc plasma. Secondly, by comparing the radial distribution of electron and ion density inside the cathode, the structure of the cathode sheath could be simulated well using this model. Finally, it was shown that the thermal radiation from the cathode surface is an important cooling mechanism of the cathode and only under higher surface emissivity can balance the larger heat flow given by the plasma to the cathode, and the temperature distribution of the cathode shows a non-monotonic increasing trend and is consistent with the profile of experimental measurement so that the so-called active zone is formed. In Chapter 4, the power deposition in the low-pressure HCA was studied in simulation. Two main aspects were considered: the power deposition into particles (both electrons and heavy particles) and the power deposition onto the cathode. It was found that the deposited power into particles increases with the rise of discharge current, but there is no effect on the total power deposition onto the cathode. In high-density plasmas, Coulomb collisions between electrons and ions also become very important, especially since a portion of the deposition energy on heavy particles comes mainly from the energy transfer from electrons to ions. It was also found that regardless of external parameters, half of the power deposition onto the cathode always comes from the particle contribution, while the other half is the net contribution of heat transfer and cathode radiation. The HCA model also allows the simulation of multiple discharge modes for low-pressure HCA discharges over a wide range of gas flow rates. It was also shown that the discharge operating conditions and the external magnetic field can change the distribution of the particle flow on the cathode wall. In Chapter 5, the ion sputtering erosion process on the cathode was simulated by coupling the HCA numerical model with the moving grid technique. The results showed that the ion sputtering erosion on the cathode depends on the ion flux and the plasma potential near the cathode wall and that their distribution and magnitude jointly determine the erosion morphology of the cathode. It was also found that the location of the most severe erosion on the cathode is located in the region of the densest ion flux on the cathode wall, rather than in the longitudinal correspondence with the central region of the internal positive column (IPC). The external magnetic fields can mitigate the cathode erosion and reduce the erosion depth, but stronger magnetic fields lead to a concentration of current density at the cathode tip, which can enhance erosion slightly at the cathode outlet end. Finally, the conclusions and innovation highlights were summarized, and prospects for future work were discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178725 Serial 8323  
Permanent link to this record
 

 
Author Gielis, J. pdf  url
doi  openurl
  Title Phi-bonacci in Ancient Greece Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 1 Pages 25-40  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000643822700002 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178322 Serial 8376  
Permanent link to this record
 

 
Author Van Hal, M. url  openurl
  Title Photo(electro)catalytic air purification and soot degradation with simultaneous energy recovery Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXXII, 203 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Today’s society is increasingly challenged by a range of urgent environmental problems. Air pollution is one of these pressing topics. This thesis will mainly focus on the degradation of volatile organic compounds (VOCs) and particulate matter (PM) – more specifically soot. A second globally urging topic is the quest for sustainable energy production. To simultaneously target both environmental problems, a photoelectrochemical (PEC) cell will be studied in this thesis, combining air purification and sustainable energy production in a single device. Photocatalysis is used at the anode of the PEC cell to drive the air purification process, while the energy contained in the degraded compounds is (partially) recovered at the cathode, either as H2 gas or electricity. The first two experimental chapters focus on the proof of concept of such an unbiased all-gas phase PEC cell targeting VOC degradation, using both TiO2- and WO3-based photocatalysts. In the two following experimental chapters the photocatalytic soot oxidation capacity of these TiO2- and WO3-based photocatalysts was studied. In the final experimental chapter the previously obtained results were combined, striving towards an efficient, sunlight-driven and soot-degrading waste gas-to-energy PEC cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184521 Serial 8378  
Permanent link to this record
 

 
Author Daems, E. url  openurl
  Title Shaping up oligonucleotides : aptamer-target recognition investigated by native mass spectrometry Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 235 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers are short, synthetic DNA or RNA molecules that are characterized by a specific 3D conformation which enables specific target recognition. Aptamers are promising tools in many application fields from sensing to therapeutics. One of the major challenges in the aptamer field is understanding the relationship between the sequence and what determines the higher-order structure and specific interactions with targets. Therefore, this PhD thesis focuses on the use of different mass spectrometry (MS) based approaches to characterize aptamers and their interactions. Several of these approaches are already widely applied to study other biomolecules, such as proteins, but are still largely unexplored for aptamers and oligonucleotides in general. A first focus was put on obtaining information on the higher-order structure and conformational stability of aptamers using a combination of MS and with ion mobility (IM) spectrometry by performing collision-induced unfolding (CIU) experiments. CIU was shown to hold great promise to analyze the conformational dynamics and gas-phase stabilities of aptamers. Next, the capabilities and limitations of native IM-MS for the analysis of noncovalent interactions of aptamers were demonstrated. The conformational behavior and interactions of cocaine-binding aptamers were studied and it was found that relative binding affinities of aptamers that only differ slightly in sequence and structure can be determined using native MS. Moreover, native IM-MS allowed the detection of small conformational changes upon binding of a target, which were found to be dependent on the binding mode of the aptamer. An adaptive binding mechanism was suggested for flexible aptamers that require more reorganization upon binding. In the final part of this thesis, the importance of thoroughly characterizing and validating aptamer-target interactions before using them in an application was emphasized. Moreover, the gathered insights were applied in our own development of a proof-of-concept aptamer-based sensor. This was shown by investigating the interactions of ampicillin aptamers which were found to not bind the target they were selected for in the first place. A multi-analytical approach combining complementary techniques was used for this purpose since no single technique is generally applicable to characterize all aptamers and their interactions and to obtain a comprehensive picture of the aptamer-target interactions. Furthermore, such multi-analytical approach was used to characterize a testosterone-binding aptamer while developing an aptamer-based electrochemiluminescent sensing strategy for this target. This shows the importance of native MS, in combination with other techniques, to thoroughly understand the aptamer-target interactions in the development of a designed application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178116 Serial 8517  
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
  Year 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 1-10  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604977300001 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174948 Serial 8557  
Permanent link to this record
 

 
Author Van Loenhout, J. url  openurl
  Title Targeting pancreatic ductal adenocarcinoma and glioblastoma with oxidative stress-mediated treatment strategies : focus on tumor cell death and modulation of the tumor microenvironment Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 167 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) and glioblastoma multiforme (GBM) are two of the most malignant solid tumor types with poor survival rates, which underscore the urgency of novel and efficacious treatment strategies. Within the last decade, immunotherapy has been established as a breakthrough in cancer therapy. This mainly has been driven by the clinical data and approval associated with several immune checkpoint inhibitors (e.g. anti-CTLA-4 and anti-PD-1/L1). Despite the clinical benefit in specific tumor types, these inhibitors have not yet fulfilled their promise in low immunogenic tumors such as PDAC and GBM. Oxidative stress in cancer cells due to elevated reactive oxygen species (ROS) and an inability to balance intracellular redox state has recently been highlighted as promising target for anticancer treatment strategies with possible immunogenic effects. In this PhD dissertation, I investigated novel oxidative stress-mediated treatment approaches to target PDAC and GBM and to enhance immunogenicity by inducing immunogenic cell death (ICD). In the first part of this thesis (chapter 2), I reviewed the mechanistic responses of cancer cells towards different oxidative stress-inducing treatment strategies and their immunomodulating effects. The resulting literature demonstrated that different exogenous and endogenous ROS-inducing therapies show direct and indirect immunomodulating effects, which can be either immunostimulatory or immunosuppressive. One of the indirect immunostimulatory effects of the ROS-mediating therapies is the capacity of inducing immunogenic cell death (ICD) in tumor cells, which can increase the immunogenicity and consequently can trigger an antitumoral immune response. In chapter 3, I investigated a novel exogenous ROS-inducing treatment method, namely cold atmospheric plasma, to determine the therapeutic and ICD-inducing effects in PDAC, in vitro. I revealed that plasma-treated PBS (pPBS) has the potential to induce ICD in pancreatic cancer cells (PCCs) and to reduce the immunosuppressive tumor microenvironment (TME) by attacking the tumor supportive pancreatic stellate cells (PSCs). Although the cell death induced in PSCs was non-immunogenic as seen by the lack of danger-associated molecular patterns (DAMPs) emission and DC activation, I showed that pPBS could disrupt the physical barrier and lower the immunosuppressive secretion profile (lower TGF-β) of PSCs. In contrast, DAMPs were released by PCCs after treatment with pPBS which resulted in activation and maturation of DCs and a more immunostimulatory secretion profile (higher TNF-α, IFN-γ). Hence, indirect plasma treatment via pPBS has the potential to enhance immunogenicity in PDAC by triggering ICD and by attacking the immunosuppressive PSCs. Tumor cells can evolve adaptation mechanisms to protect themselves against intrinsic oxidative stress by upregulation of pro-survival molecules and their antioxidant defense system to maintain the redox balance. As such, tumor cells can become resistant towards exogenous ROS-inducing therapies, like plasma. Dual targeting of the redox balance of tumor cells by increasing exogenous levels of ROS and inhibiting the antioxidant defense system can maximally exploit ROS-mediated cell death mechanisms as therapeutic anticancer strategy. In this regard, cold atmospheric plasma was combined with auranofin, a thioredoxin reductase inhibitor, in GBM (chapter 4). A synergistic effect was shown after this combination treatment in 2D and 3D, however, in 3D only high concentrations of auranofin synergized with plasma treatment. I confirmed a ROS-mediated response after combination treatment, which was able to induce distinct cell death mechanisms, specifically apoptosis and ferroptosis. Additionally, the auranofin and plasma combined treatment strategy induced cell death, which resulted in an increased release of DAMPs. Together with the observed DC maturation, these results indicates the potential increase in immunogenicity, though, the phagocytotic capacity of DCs was inhibited by auranofin. In chapter 5, I evaluated this promising oxidative stress combination therapy in GBM, in vivo. A decrease in tumor kinetics and an increased survival in GBM-bearing mice was observed when auranofin was sequentially combined with direct plasma treatment. No T cell infiltration was observed after auranofin monotherapy. However, further characterization of the TME after the combination therapy is necessary to provide more insight in the immunogenic effects in vivo. In conclusion, this PhD dissertation comprises novel and important therapeutic and immunogenic insights in cold atmospheric plasma and auranofin as promising oxidative stress-mediated treatment strategies for low immunogenic tumors, like PDAC and GBM. These preclinical results provide a solid basis for future research towards combinations with immunotherapeutic approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181309 Serial 8643  
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S. doi  openurl
  Title The apeirogon and dual numbers Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 157-160  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The richness, diversity, connection, depth and pleasure of studying symmetry continue to open doors. Here we report a connection between Coxeter's Apeirogon and the geometry associated with pictorial space, parabolic rotation and dual numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670122100011 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179759 Serial 8652  
Permanent link to this record
 

 
Author Baij, L.; Liu, C.; Buijs, J.; Alvarez Martin, A.; Westert, D.; Raven, L.; Geels, N.; Noble, P.; Sprakel, J.; Keune, K. doi  openurl
  Title Understanding and optimizing Evolon® CR for varnish removal from oil paintings Type A1 Journal article
  Year 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 155-17  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183747 Serial 8707  
Permanent link to this record
 

 
Author Kleinhans, K.; Hallemans, M.; Huysveld, S.; Thomassen, G.; Ragaert, K.; Van Geem, K.M.; Roosen, M.; Mys, N.; Dewulf, J.; De Meester, S. pdf  doi
openurl 
  Title Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities Type A1 Journal Article
  Year 2021 Publication Waste Management Abbreviated Journal Waste Management  
  Volume 120 Issue Pages 290-302  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e.

how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian postconsumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future

design of packaging, to ensure proper sorting and separation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956053X ISBN Additional Links  
  Impact Factor (up) Times cited Open Access Not_Open_Access  
  Notes We would like to thank Indaver (https://www.indaver.com/been/home/), especially Erik Huybrechts, Eric Goddaert, Eline Meyvis and Erik Moerman, for their great support on this research. Furthermore, we would like to acknowledge the help of Colruyt (https://www.colruyt.be/) and CEFLEX (https://ceflex.eu/) for the pre-studies for this research. Moreover, we would like to show our appreciation for the financial support by the Catalisti-ICON project (HBC.2018.0262) MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste) funded by Flanders Innovation & Entrepreneurship (VLAIO). We also thank the Interreg 2 Seas program PlastiCity that is co-funded by the European Regional Development Fund under subsidy contract No. 2S05-021 and the province of East-Flanders for funding this research. Approved Most recent IF: NA  
  Call Number ENM @ enm @ Serial 6667  
Permanent link to this record
 

 
Author Marinov, D.; de Marneffe, J.-F.; Smets, Q.; Arutchelvan, G.; Bal, K.M.; Voronina, E.; Rakhimova, T.; Mankelevich, Y.; El Kazzi, S.; Nalin Mehta, A.; Wyndaele, P.-J.; Heyne, M.H.; Zhang, J.; With, P.C.; Banerjee, S.; Neyts, E.C.; Asselberghs, I.; Lin, D.; De Gendt, S. url  doi
openurl 
  Title Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal npj 2D Mater Appl  
  Volume 5 Issue 1 Pages 17  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H<sub>2</sub>plasma to clean the surface of monolayer WS<sub>2</sub>grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS<sub>2</sub>in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H<sub>2</sub>S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS<sub>2</sub>devices can be maintained by the combination of H<sub>2</sub>plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H<sub>2</sub>and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613258900001 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Daniil Marinov has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 752164. Ekaterina Voronina, Yuri Mankelevitch, and Tatyana Rakhimova are thankful to the Russian Science Foundation (RSF) for financial support (Grant No. 16-12-10361). This study was carried out using the equipment of the shared research facilities of high-performance computing resources at Lomonosov Moscow State University and the computational resources and services of the HPC core facility CalcUA of the University of Antwerp, and VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government. Patrick With gratefully acknowledges imec’s CTO office for financial support during his stay at imec. The authors thank Mr. Surajit Sutar (imec) for his help during sample electrical characterization, and Patrick Verdonck for lab processing. Jean-François de Marneffe thank Prof. Simone Napolitano from the Free University of Brussels for useful discussions on irreversibly adsorbed polymer layers, and Cédric Huyghebaert (imec) for his continuous support in the framework of the Graphene FET Flagship core project. All authors acknowledge the support of imec’s pilot line and materials characterization and analysis (MCA) group, namely Jonathan Ludwig, Stefanie Sergeant, Thomas Nuytten, Olivier Richard, and Thierry Conard. Finally, Daniil Marinov thank Mikhail Krishtab (imec/KU Leuven) for his help in selecting the optimal plasma etch system for this work. Part of this project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 649953. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:175871 Serial 6671  
Permanent link to this record
 

 
Author Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 3 Pages 579  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614960600001 Publication Date 2021-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume 33 Issue 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 10 Open Access OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
  Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 5 Issue 6 Pages 1786-1800  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631643300013 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: