|
Abstract |
Today’s society is increasingly challenged by a range of urgent environmental problems. Air pollution is one of these pressing topics. This thesis will mainly focus on the degradation of volatile organic compounds (VOCs) and particulate matter (PM) – more specifically soot. A second globally urging topic is the quest for sustainable energy production. To simultaneously target both environmental problems, a photoelectrochemical (PEC) cell will be studied in this thesis, combining air purification and sustainable energy production in a single device. Photocatalysis is used at the anode of the PEC cell to drive the air purification process, while the energy contained in the degraded compounds is (partially) recovered at the cathode, either as H2 gas or electricity. The first two experimental chapters focus on the proof of concept of such an unbiased all-gas phase PEC cell targeting VOC degradation, using both TiO2- and WO3-based photocatalysts. In the two following experimental chapters the photocatalytic soot oxidation capacity of these TiO2- and WO3-based photocatalysts was studied. In the final experimental chapter the previously obtained results were combined, striving towards an efficient, sunlight-driven and soot-degrading waste gas-to-energy PEC cell. |
|