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Abstract: Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and 

bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary 

value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been 

obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces 

or bodies, resulting in very complex systems.  However, under certain conditions, the result of cutting can be a single 

surface or body, which reduces complexity considerably.  Our research is motivated by this reduction of complexity. In 

the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single 

body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons.  

These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the 

knife cutting the origin.  The Möbius phenomenon is important, since the process of cutting (or separation of zones in a 

GML body in general) then results in a single body, not in different, intertwined domains. 

In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper 

is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenom-

enon to occur.  Several examples are given to illustrate this. 

Keywords: Generalized Möbius-Listing Bodies and Surfaces, Möbius phenomenon, regular polygons, Gielis Transfor-

mations, Poincaré Recurrence Theorem. 

1. Introduction 

Generalized Möbius-Listing bodies and surfaces 

The Möbius band, a ribbon with a twist (Figure 1a), is an icon of mathematics.  It is well known that cutting 

a Möbius band along the basic line or parallel to the basic line, yields either a single (Link-1) or two connected 

bodies (Link-2) for Möbius bands.  The general case of cutting Möbius bands or ribbons with any number of 

twists, odd and even (Figure 1b,c,d), and any number of knives ,was solved in [1]. 

Möbius bands have been studied mainly in topology because of the phenomenon of non-orientability 

and one-sidedness, but also from a geometrical point of view, see e.g. [2].  Only recently Generalized Möbius-

Listing !"#!"  surfaces and bodies have been introduced [3,4]. These are toroidal structures obtained from 

prisms with cross section with rotational symmetry m and with the centers of all cross sections forming the 

basic line of the toroidal structure (Fig 2). Without loss of generality, the cross sections can be regular polygons 

$!	(with the circle	$# yielding the classical torus).  If the cross section is a line, one can obtain an annulus, or 

any shapes as shown in Figure 1. 
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Figure 1: Ribbons with n twists of 180°. !"#$%  (a) is the Möbius band 

 

The following definitions are needed [5]: 

 

Definition 1:  The toroidal structure of !"#!"  surfaces and bodies, results from joining the two ends of 

the cylinder after n twists of the prism around the basic line, with both ' and ( positive integers. 

 

 

Figure 2: (a-e) Identification of vertices, with twists leading to torus !"#!" . 
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Generalized Möbius-Listing Bodies !"#!"  are defined analytically by (1) and (2): 

⎩⎪
⎨
⎪⎧-(., 0, 1, 2) = 5%(2) + 78(0, 1, 2) + 9(., 0, 1, 2) cos( "&! ) − 	>(., 0, 1, 2) sin A"&!BC cos	(1 +"(2))
D(., 0, 1, 2) = 5$(2) + 78(0, 1, 2) + 9(., 0, 1, 2) cos( "&! ) − 	>(., 0, 1, 2) sin A"&!BC sin	(1 +"(2))

E(., 0, 1, 2) = 5'(2) + F(1, 2) + 79(., 0, 1, 2) sin A"&!B + >(., 0, 1, 2) cos( "&! )C
        (1) 

or, alternatively, 

⎩⎪
⎨
⎪⎧-(., 0, 1, 2) = 5%(2) + 78(1, 2) + 9(., 0, 1, 2) cos(0 + "&

!
)C cos	(1 +"(2))

D(., 0, 1, 2) = 5$(2) + 78(1, 2) + 9(., 0, 1, 2) cos(0 + "&

!
)C sin	(1 +"(2))

E(., 0, 1, 2) = 5'(2) + F(1, 2) + 9(., 0, 1, 2) sin A0 + "&

!
B

     (2) 

 

-, D, E, 2 is the ordinary notation for space and time coordinates and ., 0, 1 are local coordinates where . ∈ [−.∗, .∗] , with 0 < 	. ; 0 ∈ [0; 2N]  and O ∈ [0; 2Nℎ] , with ℎ ∈ ℝ.	   The functions 

5%,$,'(2), 8(0, 1, 2), 9(., 0, 1, 2),"(2)	and F(1, 2), as well as parameter S = !

"
, define simple movements. With 

these analytic representations, complex movements can be studied and decomposed into simple ones [6], al-

lowing the study of this class of surfaces and bodies from a kinematic point of view.  However, the same 

parameterizations also lend themselves to dynamic studies, with, for example, changing cross sections in time.   

 

Definition 2:  The basic line of a !"#!"  body is the continuous closed, generally spatial curve, gener-

ated by the center of the prism in its movement necessary to obtain, after n twists, the joining of the two 

opposite faces of the prism. 

This basic line can be a circle 	$#	(and any curve homeomorphic to a circle) or a self-intersecting curve 

like a Pascal’s limaçon (Figure 3a). This is a self-intersecting figure closing after two full rotations. The basic 

line can also be other planar or space curves, for example, a rose curve T = cos'1.  In this general case the 

notation !"#!" (U) is used with U ∈ ℚ denoting the shape of the basic line, with	v = 1 if the basic line is a 

circle. 

 

Definition 3. The twisting parameter S = "

!
	describes the characteristic of twisting where m is the num-

ber of vertices of the regular polygon $! (the shape of the radial cross section) and n is the number of twisting 

of the cross section of the prism before identification of its ends.  If S = "

!
 is an integer number (( = Y'), 

then the corresponding lines makes Y coils after one rotation around the torus.  If 
"

!
∈ ℚ then the corre-

sponding line makes n coils after m rotations around the torus. If 
"

!
∈ ℝ ∖ ℚ then the line makes infinite coils 

after infinite rotations around the torus without self-intersections. 

 

Definition 4:  A rib of the !"#!" (U)  for each U ∈ ℚ,  is a continuous closed, in the general case, spatial 

line on which are situated only the vertices of the radial cross section of this body (i.e., the torus line with 

characteristic 
"

!
). 

Between the ribs, planes or curved surfaces can be spanned giving rise to a !"#!"  side surfaces (Figure 

2), and if the whole structure is solid (i.e., all cross sections are disks), then one obtains !"#!"   bodies. Obvi-

ously one can also define shell structures, by limiting the radial function of the cross sections. 
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Figure 3: a. !"#*%/$ b-i: Examples of !58!"   surfaces with and without torsion. e. closed !"#,,   

!"#!"  bodies and surfaces are always closed. They are a subset of closed Generalized Twisting and Ro-

tating bodies !58!" . In this general, case the ends of the prims need not be closed and the basic line can be a 

spiral (Figure 3f) or a helix (Figure 3b,c). 

The original motivation to study !"#!"  surfaces and bodies is that the solution of boundary value prob-

lems for partial differential equations is easier to obtain with direct knowledge of the domain and, with the 

extension of surfaces to bodies, also of the internal geometry and connected domains inside !"#!" bodies. It 

allows to understand the precise relation between the asymptotic behavior of solutions and the geometrical 

structure of boundary. A number of studies have focused on elasticity of Möbius bands only [2, 7], but the 

general problem is open.   

As a generalization of Möbius bands, cutting of !"#!"  surfaces and bodies has also been studied. We 

will discuss this in Section 2 and show that the problem of cutting (Definition 5) is reduced to a problem of 

planar geometry, whereby the results depend only the cross section 9(., 0, 2) and the twisting parameter	(.   

Definition 5:  Cutting of a !"#!"  body with a regular polygon as cross section is performed with (1) a 

straight knife, which (2) cuts perpendicular to the polygonal cross section of the surfaces and bodies, and (3) 

the knife cuts the m-polygon boundary exactly in two points or two times (depending on the thickness of the 

knife). For (3) there are three possibilities: the cut of the polygon can be from a vertex to a vertex VV, from a 

vertex to a side or edge VS, or from side to side SS (=edge to edge). The precise orientation of this knife (and 

the positions where it cuts the boundary) is maintained during the complete cutting process, until the knife 

returns to its starting position, and the cutting is completed.  
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The point of the knife traces out a toroidal line along the body or surface. In general, cutting leads to 

separate bodies or surfaces, but in particular cases a single body results, similar to the single surface that 

results from cutting the original Möbius band along the basic line. In analogy with the cutting of a classic 

Möbius band along the central line, we define the Möbius phenomenon as follows: 

Definition 6:  The Möbius phenomenon occurs when, after cutting of a !"#!" 	body or surface, a single 

body or surface results, where one can travel along a rib or a side surface and return to the original position. 

We say that the Mobius phenomenon appears if moving continuously along a rib or a side surface, it is possible 

to return at the initial position. 

Given that the cutting of !"#!"  surfaces and bodies in general gives rise to very complex structures of in-

tertwined different surfaces and bodies, our main motivation is the search for the conditions that result in a 

single !"#!"  surface or body after cutting, thereby greatly reducing complexity. 

A model for natural phenomena 

In various fields of science Möbius ribbons or topologies are observed, from chemistry to physics, and in-

creasingly so [8-12].  It should not be very surprising then that !"#!"   surfaces and bodies will find appli-

cation in science; models of mollusk shells and tornados [6], circular DNA or the helical heart [13], are straight-

forward examples.  Mollusk shells and tornados are examples of non-closed structures (!58!" ), whereas cir-

cular DNA (with a circle as basic line) and the helical heart ([13] with a limaçon as basic line) are examples of 

!"#!"   structures.  

They can also be models for more complex phenomena, but then, first and foremost, it is necessary to un-

derstand the geometry of !"#!"  bodies to be able to observe these phenomena.  Figure 4a shows a !"#-" 

body in blue. The other panels show the same body represented by point clouds, with increasing noise, which 

can be representative of real physical phenomena, with measurement uncertainty.   

 

It will depend on the accuracy of the measurement whether or not such structures can be observed. With 

decreasing measurement precision and no knowledge about !"#!"  structures, one might easily mistake data 

points resulting from measurements as toroidal (Figure 4d), or a having some structure (Figure 4b,c). This 

“measurement” problem will be even worse if one has only datapoints from 2D- cross sections. The structure 

in the Figure 4b may be interpreted as resulting from phenomena with a non-linear resonances footprint [14], 

whereas the system is completely deterministic with a homogeneous material.   

 

a         b                  c             d 

Figure 4: a. !"#!
" body. B-d. The same body represented by point clouds, with increasing noise 
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Cutting of GML bodies and the Flatland experience 

Cutting of GML bodies and surfaces 

The problem gets considerably more complex if one considers that the blue structure in Figure 3 is only one 

of the four structures resulting from cutting the !"#-" body (Figure 5a). Indeed, if the cross section of the 

!"#-" body is cut with a knife from side 1 to side 3, and this cut is carried out along the whole !"#-", then 

four different bodies will result, identified by different colours in Figure 5a.  Actually, this is a Link-4 

structure with all four bodies intertwined [15].  An example of complex intertwined structures resulting from 

cutting is shown in Figure 5b. 

 

 

a        b 

Figure 5: a.	!"#!
" body cut into four pieces, b. Structures after cutting !"#!

" surface 

The process of cutting does not necessarily result in separate bodies; the lines in the cross sections in Figure 

5a, may simply be lines demarcating zones with different vector or tensor fields or different scalar values.  

The number of such zones or independent structures depends on the type of cut [15- 17] with a knife that cuts 

through the cross section (from vertex [	to vertex \ denoted by	]].,/; from vertex [ to side \ denoted by	] .̂,/, 

or from side [ to side \ denoted by	^ .̂,/), and on the number of twists, the upper index n.  In Figure 5a the 

cut is ^ %̂,'	and results in two bodies with triangular, one body with six-sided and a central one with a regular 

pentagon cross section, a total of four as seen in Figure 6, case B.III.  Case B.IV is a similar possibility, but 

with one triangular, one quadrangular and two pentagonal shapes.  In general, if the number of twists of 

!"#-" body is ( = 5 ∙ a + >, with a=0,1,2,… and > = 1,2,3,4, then twelve possible cases appear, as displayed 

in Figure 6 (A to G with subcases) [15].   Furthermore, also the twisting characteristics of each of those bodies 

after cutting are known (Figure 6, green column Structure of elements) [15].   Hence, despite the apparent 

complexity, the Link-4 structure is simple and fully deterministic. 

 

Figure 7 displays two other ways to connect the two ends of the prism to obtain a full or partial !"#," struc-

ture cut [16].  The structures in Figure 7a can be either a complete !"#,", or a partial one, with the !"#,"	con-

tinuing below the plane.   Figure 7b can also be connected to a real-life phenomenon: the twisted !"#,"	 with 

square cross section is similar to culms of square bamboos [17].  In this case the cross section is a superellipse 

instead of a square, and the twist is given by a deformation parameter; in other words, the cross section 9(., 0) 
is a superellipse and the deformation is given by twisting parameter ( [17]. Superellipses also accurately 

model annual tree rings in softwood, and such trees also grow with twist and torsion [18].  
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Figure 6:  Cutting of !"#!
" body with % = 5 ∙ ) + +, with )=0,1,2,… and + = 1,2,3,4, 
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a      b 

Figure 7:	!"##
" structure connected via plane or brane cut [15] 

If the twists are multiples of 180° however (i.e. !"#,,01$), then under certain conditions a Link-1 object re-

sults, namely in the case where the knife cuts through the center, which is always the case in a ]]%,' cut (Case 

D in Figure 8b), and can also be the case for a ^ %̂,' cut through the center (Case B.II in Figure 8b).  In these 

two cases not only do we have a Link-1 body (quadrangular in cross section in Case B.II; triangular in cross 

section in case D), but they are also one-sided, and this is called the Möbius phenomenon, in analogy with the 

classic Möbius band. 

In the process of cutting one can consider either a moving knife cutting a fixed !"#!"  body, or, alternatively, 

a moving (rotating) body and a fixed knife. Such a fixed knife can for example be fixed in the plane of Figure 

7a and the !"#," body then moves, through the knife.  Further, the knife may be a knife with a single blade 

or a multibladed knife. A moving knife with a single blade (Figure 8, case B.II) has to complete four periods 

to arrive again at its initial position, or the !"#," body has to complete four periods of rotation.  If the knife 

has two perpendicular blades, one period suffices to cut the whole structure.  

If the body is not twisted (Figure 8a), then cutting always results in two bodies.  Similar considerations 

apply to !"#-"	, with all possible cuts for ( = 5 ∙ a + > in Figure 6.  For cutting of hexagons all results have 

been classified in [19]. 

 

 

Figure 8 a. !"##
#$; b. !"##

#$%& [15] 
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The Flatland Experience 

Fortunately, the general solution for cutting !"#!"  with one or more knives has been found recently, by 

reducing the problem to planar geometry [15, 20].  The solution of the problem by a reduction of dimensions 

is reflected directly in the reduction of parameters in the analytic expressions. 

To better understand cutting with a fixed knife, we can try to visualize what an inhabitant of Flatland would 

experience.  In the 19th century, the mathematician Erwin A. Abbott wrote a story to explain to a large audi-

ence how one might think of a fourth dimension, by imagining a people consisting of circles or regular poly-

gons [21].    They are clearly planar beings, living and thriving on their world-plane, but they are not able 

to experience a third dimension at all.  When a sphere moves through Flatland all its inhabitants can observe 

is a circle of increasing and then of diminishing size, starting and ending with a point. Shock and awe.   

Now, what does an inhabitant of Flatland observe when operations with 3D !"#!"  bodies or surfaces are 

carried out, in other words, when !"#!"  bodies rotate through Flatland?  Or, when !"#!"  bodies do not 

rotate but the knives are moving? Or when we position the fixed knife in Flatland with rotating !"#!"  bod-

ies? Shock and awe, once more. 

At some instance in time an inhabitant of Flatland may find on ℎ.234 desk a hexagonal piece of paper with 

one knife across the paper (VV, VS or SS direction).  The Flatlander has no idea how it got there but leaves it 

as it is.  The next morning the Flatlander may see that the whole situation is still the same. However, it might 

also be that the “hexagonal piece of paper”, which is actually a planar section of a !"#5", rotating through 

Flatland, is sliced into different zones; how many zones depends on the number of twists of the !"#5" and 

the number of rotations through Flatland [16].  

Instead of a single knife there may also be multiple knives (Figure 9). The figures to the right in Figure 9 give 

the orientation of the knives for rotations of 60° due to torsion of !"#5", whereby the point of the arrow traces 

out a toroidal line. 

 

 

Figure 9: Cutting a hexagon with one-bladed 1', or six-bladed 1()* knives. 

Figure 10 gives all possible cuts with a one-bladed (d%,	upper row) and six-bladed knife (d5,	lower row) for 

!"#5" bodies. The six-bladed knife consists of six copies of the one-bladed knife by rotation over 60° (but they 

overlap two by two giving the appearance of three blades). 
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1
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Figure 10: All possible cuts with one-bladed 1', or six-bladed 1()* knives 

If the !"#!"  structure cuts through Flatland as the square !"#," body in Figure 7a, someone else in Flat-

land can observe a second, identical phenomenon. If both Flatlanders come into contact with each other, they 

will find that one square is somehow turned by 90°. In Euclidean geometry, one cannot distinguish between 

two squares rotated by 90° or a multiple thereof. If the !"#!"  bodies are twisted, experimental identification 

of differences may be performed on the ground. In one case the diagonal runs “North to South”, in the other 

one “East to West”.  

Without knowing the !"#!"  structure and number of knives, Flatlanders are bamboozled by this spooky 

action at a distance. If the Flatlanders try to untangle the mystery, by repeating or experimentally using other 

knives and positions, this will result in fully predictable structures, and reproducible phenomena elsewhere 

in Flatland.  Only when one brave Flatland soul travels into the third dimension it will be revealed what 

actually happens. And like in the original story, upon returning the brave soul will have a hard time convinc-

ing his co-planar Flatlanders.  

The Möbius phenomenon for efg with polygonal cross section 

The conditions for Möbius phenomenon 

Our main motivation is the search for conditions under which the complex structure remains a single surface 

or body. This reduces complexity, especially if GML surfaces and bodies represent physical phenomena.  

When a classic Möbius band is cut along the center of the band, one obtains a single (Link-1) surface, which is 

single-sided, like the original band [1]. This is known as the Möbius phenomenon. Cutting through the center 

is crucial. Extending this to !"#!"  bodies, it was observed that this Möbius phenomenon, whereby the cutting 

process yields only a single and “one-sided” body, occurs only for cross sections of polygons with an even 

number of vertices and sides and only in the specific case when the knife cuts through the center of the poly-

gon. In Figure 8a the results of cutting !"#,,0 are shown where a = 0,1,2….  This conforms to no twists (for 

a = 0) or twists of 360° (for a = 1,2,…). The link group of the object is always Link-2, and no single body can 

be obtained.   

If on the other hand, the twists are multiples of 180° (i.e., !"#,,01$), then under certain conditions, a Link-1 

object results, namely in the case where the knife cuts through the center. This is always the case in a ]]%,' 

cut (Case D in Figure 8b) and for a ^ %̂,' cut through the center (Case B.II in Figure 8b).  In these two cases 

not only do we have a Link-1 body (quadrangular in cross section in Case B.II; triangular in cross section in 

case D), but they also display the Möbius phenomenon. On the other hand, in Figure 6 one observes that a 

Link-1 phenomenon does not occur for a pentagonal cross section [4].    

The conditions to obtain Link-1 objects with the Möbius phenomenon are [22]: 

1. a cut through the center, and  

2. the rotational symmetry of the cross section '	has to be an even positive integer.    

The Möbius phenomenon is never observed if '	is odd, for this specific way of cutting.   
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One additional observation, going beyond regular polygons, was that these conditions also lead to the fact 

that at the connection point the cross sections have to ensure a smooth transition, a condition which is met 

when the two sides are congruent when rotated around the center (corresponding to the original Möbius band 

of Figure 1a). In Figure 11 these conditions are met for cases a. and b. but not for c.  This observation led to 

extending the possibility to obtain a Link-1 structure after cutting, to odd polygons.  

 

Figure 11: Two angular bodies with cut through the center. 

The Möbius phenomenon for m=even and m=odd polygons 

In all foregoing cases knives are defined to cut the whole cross section or, in other words, cutting the bound-

ary at two points.  Such knives are called chordal knives, in analogy with chords cutting a circle (leading to 

classical definitions of the trigonometric functions). The analytical definition is given in [16, 20].    

When taking into account the conditions of congruence and rotational symmetry (Fig. 11a and b), it was 

found that the Link-1 and Möbius phenomenon could also be extended to odd polygons, by the use of radial 

knives [13, 22].     

Definition 7: Radial knives are knives that cut the boundary only in one point. Hence the origin of the knife 

is contained within the boundary of the cross section and can be the center.   

In Figure 12 one-bladed chordal and radial knives are shown (with the special case of the radial knife origi-

nating in the center of the polygon). This also has consequences for how many blades a knife has. The six-

bladed d!65 knives in Figure 9 can be considered either as a six bladed radial knife with each blade originat-

ing in the center and cutting the boundary only once, or as a six-bladed chordal knife cutting the boundary 

twice. 

 

 

 

Figure 12: Chordal and radial one-bladed 1'	knives 
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In the case of ' = odd regular polygons however, it is precisely the use of chordal knives, which prevents 

the occurrence of Link-1 bodies.  This is easily seen as follows: In the case of ' radial knives, the number of 

sectors after cutting is ', irrespective whether ' is even or odd.  In Figure 13 results from the cutting of 

equiangular triangles are shown; the cut is either with chordal knives through the origin from vertex to side 

(Figure 13a), or from side to side (Figure 13c).   Three chordal knives result in 2' = 6	sectors.  These sectors 

are a combination of one light blue and one dark blue sector in Figure 13a and c. The sectors are congruent, 

but only two by two rotationally symmetric. Dark and light blue adjacent sectors are congruent but are mirror 

images. Hence, they do not satisfy the condition of rotational symmetry. 

 

 

a    b          c    d 

Figure 13:  Vertex to side and side to side cuts through the origin in a triangle, with chordal (a and c) or radial knives 

(b and d) [13]. 

The use of radial knives with origin in the center on the other hand, leads to three (' = 3) sectors which 

are both congruent (Figure 13 b and d) and rotationally symmetric around the origin. In the 3D !"#'" bodies 

with ' = ( twists, this results in one body after cutting, with Möbius phenomenon, but now also for odd 

polygons.  

Hence, we have the following theorem [13]: “If the knife cutting a !"#""  body is a radial knife with its origin in 

the center of the polygonal cross sections and cuts all sides of the polygon with equal spacing, the Möbius phenomenon 

will occur in both odd and even polygons”.  

From these conditions it is clear that the knife does not have to be a straight one; nor does the cross section 

have to be a regular polygon, as long as rotational symmetry is conserved, and the conditions of cutting are 

met. Furthermore, Equations (1) and (2) allow for a kinematic and dynamic study of !"#""  bodies with a time 

t parameter, but the study of cutting was shown to be reduced to: 

 

• the shape of the cross section, defined by m, and  

• the number of twists defined by n.   

 

A major question then arose on the effect or importance of any change in cross sections along the !"#""  body, 

deviating from the rotational symmetry.  The answer is the major result of this paper. 

One section is a sufficient condition 

In all previous works it was tacitly assumed that the cross section of the !"#!" 	remains constant along the 

whole structure, whereas the equations (1) and (2) allow for a changing cross section along the !"#!" .  In 

Figure 11 examples of two-angular cross sections were given which do (11a and b) or do not (11c) meet the 

conditions. A direct example of a !"#!"  body with changing cross section is when the cross sections change 

along the body, for example in sequences a-b-c-a, or a-b-c-b-a.  The changes can occur smoothly or in discrete 

jumps.   
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The question then is whether all cross sections have to retain the condition of rotational symmetry, to achieve 

the Link-1 or Möbius phenomenon. For example, will a Link-1 structure still occurs if the cross sections of the 

!"#!"  change from the starting point, where the conditions are met, to an intermediate section that does not 

meet these conditions, and again closing with the original cross section? The answer is: 

Theorem 1: In the cutting of !"#!"    bodies under the above conditions (radial knife cutting through the center for 

both odd and even regular polygons, or chordal knife cutting through the center for even regular polygons) a sufficient 

condition is that only one cross section is rotationally symmetric, to obtain the Link-1 result with the Möbius phenome-

non. 

Proof:  The cross sections at the start and end of the !"#!"  body are the same.  If cross sections are denoted 

as ^*, %̂, ^$, … , ^7 , then the set of all cross sections is denoted as j^*, %̂, ^$, … , ^7k.  The sequence of cross 

sections is continuous for > → ∞ and discrete (or at least partially discrete, partially continous) for > < ∞.  

The condition for a smooth joint of both ends is when ^* = ^7. Additionally the orientation of both is twisted 

before joining (e.g. 180° in the case of a square), denoted as  ↑ ^* =↓ ^7.   

For cutting, one can assume the same, constant shape along the whole !"#!"   bodies, so that the knife follows 

the classical toroidal lines (ribs or slit surfaces) (e.g,. Figure 5a). In this case only ^*	and ^7 are relevant, but 

not k %̂, ^$, … , ^78%j, and the cutting then reduces to the general case of cutting !"#!"  bodies [1,16] ∎ 

Equations (1) and (2) include a time variable 2, important if the !"#!"  body represents any physical or bio-

logical system. For the proof of Theorem 1 a simplified version can be used, since only the cross section 9(., 0) 
and the twisting parameter (, are involved. 

Some consequences 

The above result is remarkable, since one can always find a way of cutting (or division of zones) whereby at 

the end of the day, the whole shape turns out to be a one-sided body, coherent in any sense of the word. As 

long as one cross section fulfills the conditions, all other cross sections k %̂, ^$, … , ^78%j	may be anything. Going 

back to Figure 4: if only one cross section is the cross section of Figure 4a (or case B.III and B.IV in Figure 6b), 

all other cross sections may be dispersed data points as in Figures 4b,c,d.  As long as the cut is executed in 

the correct way (i.e., a chordal knife through the center for even polygons, or a radial knife originating in the 

center for even and odd polygons) it follows that the structure is a one-sided Link-1.  In case the cross sections 

are larger or outside the boundaries of the start and end, one simply can use knives with longer blades. We 

will give four illustrative examples.  

 

Example 1 with maximum entropy:  Consider a GML body with hexagonal cross section as shown in Figure 

14. This example was actually used to illustrate twisted fibre bundles in [23]. Since the Möbius band is the 

simplest non-trivial example of a fibre bundle, this also shows the generality of our results.  We consider one 

cross section of Figure 14a.  Here, the	!"#5"	 has constant cross section and according to Theorem 1 it suffices 

that only one cross section is a hexagon. All other cross sections may morph into pentagons, starfish, superel-

lipses or any shape imaginable. The cross sections may even become a point as in a double cone. Or the cross 

section can be a point, so that the !"# structure is a line, except for the sections ^*	and ^7.  Further, the 

cross sections may consist of dispersed data points, distributed according to some probability (density) func-

tion or randomly (maximum entropy).  As long as the cut is executed correctly, the result will be a single 

body (Link-1), displaying the Möbius phenomenon of one-sidedness.  
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a        b 

Figure 14a:  Fiber bundle [23], b. Poincaré’s original figure [24] 

Example 2 with redundancy: Consider a chess board with a knight moving across the board.  It is then pos-

sible for the knight to touch every square exactly once; the tour is closed if the knight arrives back at the 

original square. A closed tour of the knight corresponds to the condition ^* = ^7. For an 8x8 chess board there 

are trillions of possible closed tours [25;26]. Hence, if %̂, ^$, … , ^78%		represent the different sequences of the 

squares on a chess board for one closed knights tour, there are many ways of arranging the sections 

k %̂, ^$, … , ^78%		j,		with %̂, ^78% one knight’s move away from ^* = ^7.  But if the conditions of cutting are 

met, then neither of the sections %̂, ^$, … , ^78%, nor their arrangement play any role; the result of cutting will 

be a single Link-1 body. 

 

Example 3 with area conservation: Arnold’s Cat. In many physical and mathematical cases conservation of 

area (or volume) is crucial. In Figure 14a, all sections have the same area, but what the hexagons contain can 

be very different.  One example with area (or volume) conservation is Poincaré’s Recurrence Theorem, which 

states that any dynamical system will return arbitrarily close to its initial state after a certain time (Figure 14b). 

More precisely, Poincaré proved that in certain systems almost all trajectories return arbitrarily close to their 

initial position infinitely often.  If a flow preserves volume and has only bounded orbits, then for each open 

set there exist orbits that intersect the set infinitely often.   

 

Arnold’s Cat is the most famous illustration of the phenomenon [27; 28]. Starting with the image of a cat, and 

performing an area preserving transformation eventually, after a specific number of discrete steps, the image 

of the cat completely reappears, and will continue to do so, infinitely. The transformation tears up the image, 

but maps it back to fit the original square in every step, hence it is area-preserving (one can imagine that each 

section in Figure 14a except one, has the same hexagon as boundary, but the domains inside may look random 

or disordered). In [28] plant leaves defined by Gielis curves were subjected to such Anosov transformation to 

illustrate the Poincaré Recurrence phenomenon.  

Obviously, in a !"# body the cat or the leaves may be one cross section (beginning and end) and all other 

cross section can be the intermediate discrete steps and are of the same area as the initial one, since the trans-

formation is area-preserving. If the image has rotational symmetry, one can cut the !"#	body through the 

center and the result will be a single, one-sided body.  

 

Example 4: Flatland revisited. Figure 7b shows a !"#," structure connected to a brane, illustrative of worm-

holes. Since the two sections at the brane are the same, namely ^* and ^7, one can define the cutting process 
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in such a way that, whatever goes in comes out the same on the other side, so that everything remains con-

nected as a Link-1 irrespective of what happens inside the wormhole.  A final conclusion is that the young 

Flatlander in Abbot’s story must have been extremely lucky to observe the full sphere.  Those who stayed 

behind would have witnessed growing and waning circles, whereas in 3D everything might have been dust. 

 

The set of examples can be extended without bounds. 
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