|   | 
Details
   web
Records
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages (down) 075439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371398000007 Publication Date 2016-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132352 Serial 4213
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Extra Dirac points in the energy spectrum for superlattices on single-layer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 7 Pages (down) 075438,1-075438,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274998200133 Publication Date 2010-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 211 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Brazilian Council for Research (CNPq), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81767 Serial 1159
Permanent link to this record
 

 
Author Cavalcante, L.S.; Chaves, A.; da Costa, D.R.; Farias, G.A.; Peeters, F.M.
Title All-strain based valley filter in graphene nanoribbons using snake states Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 7 Pages (down) 075432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A pseudomagnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudomagnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000381889300002 Publication Date 2016-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; Discussions with R. Grassi are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq), under the PRONEX/FUNCAP and Science Without Borders (SWB) programs, CAPES, the Lemann Foundation, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144667 Serial 4639
Permanent link to this record
 

 
Author Chwiej, T.; Bednarek, S.; Adamowski, J.; Peeters, F.M.
Title Broken one-particle symmetry in few-electron coupled quantum dots Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue 7 Pages (down) 075422,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235668900113 Publication Date 2006-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:57003 Serial 257
Permanent link to this record
 

 
Author Nga, T.T.N.; Peeters, F.M.
Title Influence of electron-electron interaction on the cyclotron resonance spectrum of magnetic quantum dots containing few electrons Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 7 Pages (down) 075419-075419,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The configuration interaction method is used to obtain the magneto-optical absorption spectrum of a few-electron (Ne=1,2,,5) quantum dot containing a single magnetic ion. We find that the IR spectrum (the position, the number, and the oscillator strength of the cyclotron resonance peaks) depends on the strength of the Coulomb interaction, the number of electrons, and the position of the magnetic ion. We find that the Kohn theorem is no longer valid as a consequence of the electron-spin-magnetic-ion-spin-exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287584600011 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by FWO-Vl (Flemish Science Foundation), the Brazilian science foundation CNPq, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88912 Serial 1620
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Chaves, A.; Wirtz, L.; Peeters, F.M.
Title Ab initio and semiempirical modeling of excitons and trions in monolayer TiS3 Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 7 Pages (down) 075419
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We explore the electronic and the optical properties of monolayer TiS3, which shows in-plane anisotropy and is composed of a chain-like structure along one of the lattice directions. Together with its robust direct band gap, which changes very slightly with stacking order and with the thickness of the sample, the anisotropic physical properties of TiS3 make the material very attractive for various device applications. In this study, we present a detailed investigation on the effect of the crystal anisotropy on the excitons and the trions of the TiS3 monolayer. We use many-body perturbation theory to calculate the absorption spectrum of anisotropic TiS3 monolayer by solving the Bethe-Salpeter equation. In parallel, we implement and use a Wannier-Mott model for the excitons that takes into account the anisotropic effective masses and Coulomb screening, which are obtained from ab initio calculations. This model is then extended for the investigation of trion states of monolayer TiS3. Our calculations indicate that the absorption spectrum of monolayer TiS3 drastically depends on the polarization of the incoming light, which excites different excitons with distinct binding energies. In addition, the binding energies of positively and the negatively charged trions are observed to be distinct and they exhibit an anisotropic probability density distribution.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000442342100002 Publication Date 2018-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. H.S. acknowledges financial support from TUBITAK under Project No. 117F095. A.C. acknowledges support from the Brazilian Research Council (CNPq), through the PRONEX/FUNCAP and Science Without Borders programs, and from the Lemann Foundation. E.T. and L.W. acknowledge support from the National Research Fund, Luxembourg (IN-TER/ANR/13/20/NANOTMD). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153721UA @ admin @ c:irua:153721 Serial 5076
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.
Title Geometry and edge effects on the energy levels of graphene quantum rings : a comparison between tight-binding and simplified Dirac models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 7 Pages (down) 075418-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types in the presence of a perpendicular magnetic field. Results are obtained within the tight-binding (TB) and Dirac models and we discuss which features of the former can be recovered by using the approximations imposed by the latter. Energy levels of graphene quantum rings obtained by diagonalizing the TB Hamiltonian are demonstrated to be strongly dependent on the rings geometry and the microscopical structure of the edges. This makes it difficult to recover those spectra by the existing theories that are based on the continuum (Dirac) model. Nevertheless, our results show that both approaches (i.e., TB and Dirac model) may provide similar results, but only for very specific combinations of ring geometry and edge types. The results obtained by a simplified model describing an infinitely thin circular Dirac ring show good agreement with those obtained for hexagonal and rhombus armchair graphene rings within the TB model. Moreover, we show that the energy levels of a circular quantum ring with an infinite mass boundary condition obtained within the Dirac model agree with those for a ring defined by a ring-shaped staggered potential obtained within the TB model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332390000009 Publication Date 2014-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was financially supported by CNPq, under Contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Bilateral programme between CNPq and the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115823 Serial 1328
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
Title Quantum transport in defective phosphorene nanoribbons : effects of atomic vacancies Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 7 Pages (down) 075414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000424901800006 Publication Date 2018-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the FLAG-ERA TRANS 2D TMD, and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:149255UA @ admin @ c:irua:149255 Serial 4946
Permanent link to this record
 

 
Author Nguyen, H.T.T.; Obeid, M.M.; Bafekry, A.; Idrees, M.; Vu, T.V.; Phuc, H., V; Hieu, N.N.; Le Hoa, T.; Amin, B.; Nguyen, C., V
Title Interfacial characteristics, Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 7 Pages (down) 075414-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional graphene-based van der Waals heterostructures have received considerable interest because of their intriguing characteristics compared with the constituent single-layer two-dimensional materials. Here, we investigate the interfacial characteristics, Schottky contact, and optical performance of graphene/Ga2SSe van der Waals (vdW) heterostructure using first-principles calculations. The effects of stacking patterns, electric gating, and interlayer coupling on the interfacial properties of graphene/Ga2SSe heterostructures are also examined. Our results demonstrate that the Dirac cone of graphene is well preserved at the F point in all stacking patterns due to the weak vdW interactions, which keep the heterostructures feasible such that they can be obtained in further experiments. Moreover, depending on the stacking patterns, a small band gap of about 13-17 meV opens in graphene and has a high carrier mobility, indicating that the graphene/Ga2SSe heterostructures are potential candidates for future high-speed nanoelectronic applications. In the ground state, the graphene/Ga2SSe heterostructures form an n-type Schottky contact. The transformation from an n-type to a p-type Schottky contact or to an Ohmic contact can be forced by electric gating or by varying the interlayer coupling. Our findings could provide physical guidance for designing controllable Schottky nanodevices with high electronic and optical performances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000557294500006 Publication Date 2020-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access
Notes ; This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.01-2019.05. The authors declare that there are no conflicts of interest regarding the publication of this paper. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:171163 Serial 6549
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Ozaydin, H.D.; Senger, R.T.; Peeters, F.M.
Title TiS3 nanoribbons : width-independent band gap and strain-tunable electronic properties Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages (down) 075413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties, carrier mobility, and strain response of TiS3 nanoribbons (TiS3 NRs) are investigated by first-principles calculations. We found that the electronic properties of TiS3 NRs strongly depend on the edge type (a or b). All a-TiS3 NRs are metallic with a magnetic ground state, while b-TiS3 NRs are direct band gap semiconductors. Interestingly, the size of the band gap and the band edge position are almost independent of the ribbon width. This feature promises a constant band gap in a b-TiS3 NR with rough edges, where the ribbon width differs in different regions. The maximum carrier mobility of b-TiS3 NRs is calculated by using the deformation potential theory combined with the effective mass approximation and is found to be of the order 10(3) cm(2) V-1 s(-1). The hole mobility of the b-TiS3 NRs is one order of magnitude lower, but it is enhanced compared to the monolayer case due to the reduction in hole effective mass. The band gap and the band edge position of b-TiS3 NRs are quite sensitive to applied strain. In addition we investigate the termination of ribbon edges by hydrogen atoms. Upon edge passivation, the metallic and magnetic features of a-TiS3 NRs remain unchanged, while the band gap of b-TiS3 NRs is increased significantly. The robust metallic and ferromagnetic nature of a-TiS3 NRs is an essential feature for spintronic device applications. The direct, width-independent, and strain-tunable band gap, as well as the high carrier mobility, of b-TiS3 NRs is of potential importance in many fields of nanoelectronics, such as field-effect devices, optoelectronic applications, and strain sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000359344100014 Publication Date 2015-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. is supported by a FWO Pegasus-Short Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:127760 Serial 4259
Permanent link to this record
 

 
Author Mirzakhani, M.; Peeters, F.M.; Zarenia, M.
Title Circular quantum dots in twisted bilayer graphene Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 7 Pages (down) 075413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within a tight-binding approach, we investigate the effect of twisting angle on the energy levels of circular bilayer graphene (BLG) quantum dots (QDs) in both the absence and presence of a perpendicular magnetic field. The QDs are defined by an infinite-mass potential, so that the specific edge effects are not present. In the absence of magnetic field (or when the magnetic length is larger than the moire length), we show that the low-energy states in twisted BLG QDs are completely affected by the formation of moire patterns, with a strong localization at AA-stacked regions. When magnetic field increases, the energy gap of an untwisted BLG QD closes with the edge states, localized at the boundaries between the AA- and AB-stacked spots in a twisted BLG QD. Our observation of the spatial localization of the electrons in twisted BLG QDs can be experimentally probed by low-bias scanning tunneling microscopy measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512772200004 Publication Date 2020-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 13 Open Access
Notes ; We gratefully acknowledge discussions with I. Snyman. M.Z. acknowledges support from the U.S. Department of Energy (Office of Science) under Grant No. DE-FG0205ER46203. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:166493 Serial 6470
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-Fard, T.; Farmanbar, M.; Peeters, F.M.
Title Strong anisotropic optical conductivity in two-dimensional puckered structures : the role of the Rashba effect Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 7 Pages (down) 075411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000407097100005 Publication Date 2017-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145725 Serial 4752
Permanent link to this record
 

 
Author Houben, K.; Jochum, J.K.; Lozano, D.P.; Bisht, M.; Menendez, E.; Merkel, D.G.; Ruffer, R.; Chumakov, A., I; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Couet, S.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title In situ study of the \alpha-Sn to \beta-Sn phase transition in low-dimensional systems : phonon behavior and thermodynamic properties Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 7 Pages (down) 075408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The densities of phonon states of thin Sn films on InSb substrates are determined during different stages of the alpha-Sn to beta-Sn phase transition using nuclear inelastic x-ray scattering. The vibrational entropy and internal energy per atom as a function of temperature are obtained by numerical integration of the phonon density of states. The free energy as a function of temperature for the nanoscale samples is compared to the free energy obtained from ab initio calculations of bulk tin in the alpha-Sn and beta-Sn phase. In thin films this phase transition is governed by the interplay between the vibrational behavior of the film (the phase transition is driven by the vibrational entropy) and the stabilizing influence of the substrate (which depends on the film thickness). This brings a deeper understanding of the role of lattice vibrations in the phase transition of nanoscale Sn.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478992800005 Publication Date 2019-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO) and the Concerted Research Action (Grant No. GOA14/007). K.H., S.C., D.P.L., and E.M. wish to thank the FWO for financial support. The authors gratefully acknowledge the European Synchrotron Radiation Facility (ESRF) for the granted beam time and the use of the in situ UHV preparation chamber. The authors thank B. Opperdoes for technical support and T. Peissker and R. Lieten for fruitful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161836 Serial 5416
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M.
Title Trions in cylindrical nanowires with a dielectric mismatch Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 7 Pages (down) 075405,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300136 Publication Date 2007-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66119 Serial 3732
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M.
Title From graphene to graphite: electronic structure around the K point Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 7 Pages (down) 075404,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240238800090 Publication Date 2006-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 738 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60807 Serial 1282
Permanent link to this record
 

 
Author Yang, C.H.; Peeters, F.M.; Xu, W.
Title Landau-level broadening due to electron-impurity interaction in graphene in strong magnetic fields Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 7 Pages (down) 075401:1-075401:6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of electron-impurity and electron-electron interactions on the energy spectrum of electrons moving in graphene is investigated in the presence of a high magnetic field. We find that the width of the broadened Landau levels exhibits an approximate 1/B dependence near half filling for charged impurity scattering. The Landau-level width, the density of states, and the Fermi energy exhibit an oscillatory behavior as a function of magnetic field. Comparison with experiment shows that scattering with charged impurities cannot be the main scattering mechanism that determines the width of the Landau levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280553700008 Publication Date 2010-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the National Science Foundation of China under Grant No. 10804053, the Foundation of NUIST under Grant No. S8108062001, and the Chinese Academy of Sciences and Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84043 Serial 1769
Permanent link to this record
 

 
Author Ahmadkhani, S.; Alihosseini, M.; Ghasemi, S.; Ahmadabadi, I.; Hassani, N.; Peeters, F.M.; Neek-Amal, M.
Title Multiband flattening and linear Dirac band structure in graphene with impurities Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume 107 Issue 7 Pages (down) 075401-75408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Flat bands in the energy spectrum have attracted a lot of attention in recent years because of their unique properties and promising applications. Special arrangement of impurities on monolayer graphene are proposed to generate multiflat bands in the electronic band structure. In addition to the single midgap states in the spectrum of graphene with low hydrogen density, we found closely spaced bands around the Fermi level with increasing impurity density, which are similar to discrete lines in the spectrum of quantum dots, as well as the unusual Landau-level energy spectrum of graphene in the presence of a strong magnetic field. The presence of flat bands crucially depends on whether or not there are odd or even electrons of H(F) atoms bound to graphene. Interestingly, we found that a fully hydrogenated (fluoridated) of a hexagon of graphene sheet with six hydrogen (fluorine) atoms sitting on top and bottom in consecutive order exhibits Dirac cones in the electronic band structure with a 20% smaller Fermi velocity as compared to the pristine graphene. Functionalizing graphene introduces various C-C bond lengths resulting in nonuniform strains. Such a nonuniform strain may induce a giant pseudomagnetic field in the system, resulting in quantum Hall effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000994364500006 Publication Date 2023-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:197431 Serial 8822
Permanent link to this record
 

 
Author Molnár, B.; Vasilopoulos, P.; Peeters, F.M.
Title Magnetoconductance through a chain of rings with or without periodically modulated spin-orbit interaction strength and magnetic field Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue Pages (down) 075330,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000231564500117 Publication Date 2005-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 52 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69414 Serial 1915
Permanent link to this record
 

 
Author Redli<<0144>>ski, P.; Peeters, F.M.
Title Optical properties of free-standing GaAs semiconductor nanowires and their dependence on the growth direction Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue Pages (down) 075329,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000253764200109 Publication Date 2008-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69629 Serial 2475
Permanent link to this record
 

 
Author Stopa, T.; Szafran, B.; Tavernier, M.B.; Peeters, F.M.
Title Dependence of the vortex structure in quantum dots on the range of the inter-electron interaction Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue 7 Pages (down) 075315,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235668900075 Publication Date 2006-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:57002 Serial 646
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title Single and vertically coupled type-II quantum dots in a perpendicular magnetic field: exciton ground-state properties Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 7 Pages (down) 075314,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000177969800106 Publication Date 2002-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:62430 Serial 3017
Permanent link to this record
 

 
Author Li, B.; Djotyan, A.P.; Hao, Y.L.; Avetisyan, A.A.; Peeters, F.M.
Title Effect of a perpendicular magnetic field on the shallow donor states near a semiconductor-metal interface Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages (down) 075313-75319
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the influence of an external perpendicular magnetic field on the lowest-energy states of an electron bound to a donor which is located near a semiconductor-metal interface. The problem is treated within the effective mass approach and the lowest-energy states are obtained through (1) the “numerically exact” finite element method, and (2) a variational approach using a trial wave function where all image charges that emerge due to the presence of the metallic gate are taken into account. The trial wave functions are constructed such that they reduce to an exponential behavior for sufficiently small magnetic fields and become Gaussian for intermediate and large magnetic fields. The average electron-donor distance can be controlled by the external magnetic field. We find that the size of the 2p(z) state depends strongly on the magnetic field when the donor is close to the interface, showing a nonmonotonic behavior, in contrast with the ground and the other excited states. DOI: 10.1103/PhysRevB.87.075313
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314874800017 Publication Date 2013-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107664 Serial 793
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
Title Dynamic response of artificial bipolar molecules Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 7 Pages (down) 075311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We calculate the equilibrium properties and the dynamic response of two vertically coupled circular quantum dots populated by particles of different electrical charge sign, i.e., electrons and holes. The equilibrium density profiles are obtained and used to compute the frequencies and oscillator strengths of magnetoplasma excitations. We find a strong coupling between the modes derived from the center-of-mass modes of the individual dots which leads to an anticrossing with a pronounced oscillator strength transfer from the “acoustic” to the “optical” branch. Also, due to the breaking of the generalized Kohn theorem a number of other than center-of-mass modes are excited whose oscillator strengths, however, are rather weak.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000177969800103 Publication Date 2002-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:99397 Serial 765
Permanent link to this record
 

 
Author Vagov, A.; Glaessl, M.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.
Title Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 7 Pages (down) 075309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate that in quantum-dot cavity systems, the interplay between acoustic phonons and photon losses introduces novel features and characteristic dependencies in the system dynamics. In particular, the combined action of both dephasing mechanisms strongly affects the transition from the weak-to the strong-coupling regime as well as the shape of the spectral triplet that represents the quantum-dot occupation in Fourier space. The width of the central peak in the triplet is expected to decrease with rising temperature, while the widths and heights of the side peaks depend nonmonotonically on the dot-cavity coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341258700002 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; We acknowledge fruitful discussions with A. Nazir which helped us to more clearly formulate the relation between our phenomenological approach and the microscopic theory. M.D.C. further acknowledges Alexander von Humboldt and BELSPO grants for support. Financial support from the Deutsche Forschungsgemeinschaft (Grant No. AX 17/7-1) is also gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119257 Serial 437
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Tavernier, M.B.; Peeters, F.M.
Title Power-law dependence of the angular momentum transition fields in few-electron quantum dots Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages (down) 075305,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220055300064 Publication Date 2004-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69382 Serial 2687
Permanent link to this record
 

 
Author Rivera-Julio, J.; Gonzalez-Garcia, A.; Gonzalez-Hernandez, R.; Lopez-Perez, W.; Peeters, F.M.; Hernandez-Nieves, A.D.
Title Vibrational properties of germanane and fluorinated germanene in the chair, boat, and zigzag-line configurations Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 7 Pages (down) 075301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and vibrational properties of germanane and fluorinated germanene are studied within density functional theory (DFT) and density functional perturbation theory frameworks. Different structural configurations of germanane and fluorinated germanene are investigated. The energy difference between the different configurations are consistently smaller than the energy of thermal fluctuations for all the analyzed DFT functionals LDA, GGA, and hybrid functionals, which implies that, in principle, it is possible to find these different configurations in different regions of the sample as minority phases or local defects. We calculate the Raman and infrared spectra for these configurations by using ab initio calculations and compare it with available experimental spectra for germanane. Our results show the presence of minority phases compatible with the configurations analyzed in this work. As these low energy configurations are metastable the present work shows that the synthesis of these energy competing phases is feasible by selectively changing the synthesis conditions, which is an opportunity to expand in this way the availability of new two-dimensional compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454925400001 Publication Date 2018-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 8 Open Access
Notes ; We acknowledge financial support from PICT-2016-1087 from ANPCyT, PIP 2014-2016 00402 from CONICET and the Argentina-Belgium colaboration program SECYT-FWO FW/ 14/04. This work was also supported by Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en ciencias basicas ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:156708 Serial 5238
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M.
Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages (down) 075111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369401000001 Publication Date 2016-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131614 Serial 4220
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Cahangirov, S.; Rubio, A.; Peeters, F.M.
Title Anisotropic electronic, mechanical, and optical properties of monolayer WTe2 Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 7 Pages (down) 074307
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we investigate the electronic, mechanical, and optical properties of monolayer WTe2. Atomic structure and ground state properties of monolayer WTe2 (T-d phase) are anisotropic which are in contrast to similar monolayer crystals of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, WSe2, and MoTe2, which crystallize in the H-phase. We find that the Poisson ratio and the in-plane stiffness is direction dependent due to the symmetry breaking induced by the dimerization of the W atoms along one of the lattice directions of the compound. Since the semimetallic behavior of the T-d phase originates from this W-W interaction (along the a crystallographic direction), tensile strain along the dimer direction leads to a semimetal to semiconductor transition after 1% strain. By solving the Bethe-Salpeter equation on top of single shot G(0)W(0) calculations, we predict that the absorption spectrum of T-d-WTe2 monolayer is strongly direction dependent and tunable by tensile strain. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000375158000022 Publication Date 2016-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 62 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. S.C. and A.R. acknowledge the financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P), Grupos Consolidados (IT578-13), and AFOSR Grant No. FA2386-15-1-0006 AOARD 144088, H2020-NMP-2014 project MOSTOPHOS, GA No. SEP-210187476, and COST Action MP1306 (EUSpec). S.C. acknowledges the support from The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:144747 Serial 4640
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 140 Issue 7 Pages (down) 074304-74309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000332039900020 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 30 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:115857 Serial 1002
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 7 Pages (down) 074205-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832387000006 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:189498 Serial 7130
Permanent link to this record