|
Record |
Links |
|
Author |
Kang, J.; Sahin, H.; Ozaydin, H.D.; Senger, R.T.; Peeters, F.M. |
|
|
Title |
TiS3 nanoribbons : width-independent band gap and strain-tunable electronic properties |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
92 |
Issue |
92 |
Pages |
075413 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The electronic properties, carrier mobility, and strain response of TiS3 nanoribbons (TiS3 NRs) are investigated by first-principles calculations. We found that the electronic properties of TiS3 NRs strongly depend on the edge type (a or b). All a-TiS3 NRs are metallic with a magnetic ground state, while b-TiS3 NRs are direct band gap semiconductors. Interestingly, the size of the band gap and the band edge position are almost independent of the ribbon width. This feature promises a constant band gap in a b-TiS3 NR with rough edges, where the ribbon width differs in different regions. The maximum carrier mobility of b-TiS3 NRs is calculated by using the deformation potential theory combined with the effective mass approximation and is found to be of the order 10(3) cm(2) V-1 s(-1). The hole mobility of the b-TiS3 NRs is one order of magnitude lower, but it is enhanced compared to the monolayer case due to the reduction in hole effective mass. The band gap and the band edge position of b-TiS3 NRs are quite sensitive to applied strain. In addition we investigate the termination of ribbon edges by hydrogen atoms. Upon edge passivation, the metallic and magnetic features of a-TiS3 NRs remain unchanged, while the band gap of b-TiS3 NRs is increased significantly. The robust metallic and ferromagnetic nature of a-TiS3 NRs is an essential feature for spintronic device applications. The direct, width-independent, and strain-tunable band gap, as well as the high carrier mobility, of b-TiS3 NRs is of potential importance in many fields of nanoelectronics, such as field-effect devices, optoelectronic applications, and strain sensors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Lancaster, Pa |
Editor |
|
|
|
Language |
|
Wos |
000359344100014 |
Publication Date |
2015-08-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121; 1550-235x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
55 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. is supported by a FWO Pegasus-Short Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. ; |
Approved |
Most recent IF: 3.836; 2015 IF: 3.736 |
|
|
Call Number |
UA @ lucian @ c:irua:127760 |
Serial |
4259 |
|
Permanent link to this record |