toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Obeid, M.M.; Bafekry, A.; Rehman, S.U.; Nguyen, C., V. pdf  doi
openurl 
  Title A type-II GaSe/HfS₂ van der Waals heterostructure as promising photocatalyst with high carrier mobility Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 534 Issue Pages 147607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the electronic, optical, and photocatalytic properties of GaSe/HfS2 heterostructure are studied via first-principles calculations. The stability of the vertically stacked heterobilayers is validated by the binding energy, phonon spectrum, and ab initio molecular dynamics simulation. The results reveal that the most stable GaSe/HfS2 heterobilayer retains a type-II alignment with an indirect bandgap 1.40 eV. As well, the results also show strong optical absorption intensity in the studied heterostructure (1.8 x 10(5) cm(-1)). The calculated hole mobility is 1376 cm(2) V-1 s(-1), while electron mobility reaches 911 cm(2) V-1 s(-1) along the armchair and zigzag directions. By applying an external electric field, the bandgap and band offset of the designed heterostructure can be effectively modified. Remarkably, a stronger external electric field can create nearly free electron states in the vicinity of the bottom of the conduction band, which induces indirect-to-direct bandgap transition as well as a semiconductor-to-metal transition. In contrast, the electronic properties of GaSe/HfS2 heterostructure are predicted to be insensitive to biaxial strain. The current work reveals that GaSe/HfS2 heterostructure is a promising candidate as a novel photocatalytic material for hydrogen generation in the visible range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582367700045 Publication Date 2020-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access (up)  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:174301 Serial 6682  
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S. pdf  doi
openurl 
  Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 12 Pages 8634-8639  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599507100032 Publication Date 2020-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 29 Open Access (up)  
  Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:175048 Serial 6685  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. doi  openurl
  Title Machine learning approach to constructing tight binding models for solids with application to BiTeCl Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 21 Pages 215107  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000597311900001 Publication Date 2020-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited 2 Open Access (up)  
  Notes ; This work was supported by the Methusalem program of the Flemish government and was partially supported by BOF (UAntwerpen Grant Reference No. ADPERS/BAP/RS/ 2019). We would like to thank one of the anonymous referees for assisting us in making the paper more accessible to the reader. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:174380 Serial 6691  
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y. url  doi
openurl 
  Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
  Year 2020 Publication Physical review research Abbreviated Journal  
  Volume 2 Issue 1 Pages 013329  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602698100008 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access (up)  
  Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175138 Serial 6694  
Permanent link to this record
 

 
Author Shekarforoush, S.; Jalali, H.; Yagmurcukardes, M.; Milošević, M.V.; Neek-Amal, M. url  doi
openurl 
  Title Optoelectronic properties of confined water in angstrom-scale slits Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 23 Pages 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optoelectronic properties of confined water form one of the most active research areas in the past few years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric constants (epsilon(el)(perpendicular to) and epsilon(diP)(perpendicular to)) of strongly confined water. We reveal that epsilon(perpendicular to el) and epsilon(diP)(perpendicular to) become comparable for water confined in angstrom-scale channels (with a height of less than 15 angstrom) within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both epsilon(e)(l)(perpendicular to) and epsilon(dip)(perpendicular to) is linked to the formation of the ordered structure of ice for h approximate to (7 -7.5) angstrom. The recently measured total dielectric constant epsilon(T)(perpendicular to) of nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical properties of both confined water and GE membranes, and show that the electron energy loss function of confined water strongly differs from that of bulk water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595856100004 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access (up)  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). M.Y. gratefully acknowledges his FWO postdoctoral mandate. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:175051 Serial 6695  
Permanent link to this record
 

 
Author Yagmurcukardes, M. url  doi
openurl 
  Title Stable anisotropic single-layer of ReTe₂ : a first principles prediction Type A1 Journal article
  Year 2020 Publication Turkish Journal of Physics Abbreviated Journal  
  Volume 44 Issue 5 Pages 450-457  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In order to investigate the structural, vibrational, electronic, and mechanical features of single-layer ReTe2 first-principles calculations are performed. Dynamical stability analyses reveal that single-layer ReTe2 crystallize in a distorted phase while its 1H and 1T phases are dynamically unstable. Raman spectrum calculations show that single-layer distorted phase of ReTe2 exhibits 18 Raman peaks similar to those of ReS2 and ReSe2. Electronically, single-layer ReTe2 is shown to be an indirect gap semiconductor with a suitable band gap for optoelectronic applications. In addition, it is found that the formation of Re-units in the crystal induces anisotropic mechanical parameters. The in-plane stiffness and Poisson ratio are shown to be significantly dependent on the lattice orientation. Our findings indicate that single-layer form of ReTe2 can only crystallize in a dynamically stable distorted phase formed by the Re-units. Single-layer of distorted ReTe2 can be a potential in-plane anisotropic material for various nanotechnology applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585330600004 Publication Date 2020-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1300-0101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes ; Computational resources were provided by the Scientific and Technological Research Council of Turkey (TUBITAK) Turkish Academic Network and Information Center (ULAKBIM), High Performance and Grid Computing Center (TR-Grid e-Infrastructure) and by Flemish Supercomputer Center (VSC). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174296 Serial 6698  
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B. url  doi
openurl 
  Title Two distinctive regimes in the charge transport of a magnetic topological ultra thin film Type A1 Journal article
  Year 2020 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 22 Issue 12 Pages 123004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the magnetic impurities on the charge transport in a magnetic topological ultra-thin film (MTF) is analytically investigated by applying the semi-classical Boltzmann framework through a modified relaxation-time approximation. Our results for the relaxation time of electrons as well as the charge conductivity of the system exhibit two distinct regimes of transport. We show that the generated charge current in a MTF is always dissipative and anisotropic when both conduction bands are involved in the charge transport. The magnetic impurities induce a chirality selection rule for the transitions of electrons which can be altered by changing the orientation of the magnetic impurities. On the other hand, when a single conduction band participates in the charge transport, the resistivity is isotropic and can be entirely suppressed due to the corresponding chirality selection rule. Our findings propose a method to determine an onset thickness at which a crossover from a three-dimensional magnetic topological insulator to a (two-dimensional) MTF occurs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000596436300001 Publication Date 2020-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 2 Open Access (up)  
  Notes ; MZ acknowledges support from the U.S. Department of Energy (Office of Science) under Grant No. DE-FG02- 05ER46203. ; Approved Most recent IF: 3.3; 2020 IF: 3.786  
  Call Number UA @ admin @ c:irua:174387 Serial 6701  
Permanent link to this record
 

 
Author Rivera Julio, J. url  openurl
  Title Cálculos ab initio de sistemas 2D y de baja dimensionalidad Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 137 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176996 Serial 6718  
Permanent link to this record
 

 
Author Grangeiro de Barros, A.; Devroede, R.; Vanlanduit, S.; Vuye, C.; Kampen, J.K. url  openurl
  Title Acoustic simulation of noise barriers and prediction of annoyance for local residents Type P1 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)  
  Abstract Road traffic is the most widespread environmental noise source in Europe, proven to affect human health and well-being adversely. Noise barriers can be a very effective way to objectively reduce the noise levels to which the population is exposed, leading to positive effects on noise perception and quality of life. In this paper, surveys were used to assess subjective noise level indicators (annoyance and quality of life) from residents of the vicinity of a highway where obsolete noise barriers were to be replaced. %HA before the barrier replacement was measured from the surveys (26.8%) and estimated based on the acoustic simulation and two existing exposure/response relationships (14.6 and 18.8% before and 13.6 and 8.3% after). The difference in the measured %HA to those calculated from the ERRs shows that those models might not estimate %HA fairly for small samples or particular situations where high Lden is reported. Noise annoyance correlated differently with the quality of life indicators: a weak link was observed with health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Objective noise measurements gave LA,eq,(15 min.) reductions of 4.1dB(A) due to the new barrier, while in acoustics models, calculated as Lday, expected this reduction to be 5.2 dB(A). After replacing the noise barriers, a second survey could still not be distributed due to the unknown effect of the COVID-19 measures that are still active  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-83-7880-799-5 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181057 Serial 6969  
Permanent link to this record
 

 
Author Sabzalipour, A. url  openurl
  Title Charge transport in magnetic topological insulators Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages xiv, 185 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract Novel quantum phases of matter and developing practical control over their characteristics is one of the primary aims of current condensed matter physics. It offers the potential for a new generation of energy, electronic and photonic technologies. Among all the newly found phases of matter, topological insulators are novel phases of quantum matter with fascinating bulk band topology and surface states protected by specific symmetries. For example, at the boundary of a strong topological insulator and a trivial insulator, metallic surface states appear that are protected by time-reversal symmetry. As a result, the bulk continues to be insulating, while the surface can support exotic high-mobility spin-polarized electronic states. Since there is no such thing as a clean system, impurities and other disorders are always present in materials. Even while impurities appear to be unfavorable to a system at first look, doping the host system with impurities allows us to engineer different electronic properties of systems, such as the Fermi level or electron density. Because of the symmetry protected metallic states in topological insulators, charge transport responds distinctively to magnetic and non-magnetic impurities. This doctoral dissertation explores how the longitudinal charge transport in magnetic topological thin films and the anomalous Hall effect on the surface of 3D magnetic topological insulators is influenced by point-like and randomly distributed dilute magnetic impurities. We are interested in how charge transport in these systems responds to the orientation of the magnetization orientation and how this response evolves based on the system's main characteristics, such as the magnitude of the Fermi level or gate voltage. Because topological insulators have a strong spin-orbit coupling, the interaction between conducting electrons and local magnetic impurities is very anisotropic. We will show that this anisotropy even enhances when magnetic topological thin films are exposed to a substrate or gate voltage. Therefore, to properly capture this anisotropy in charge transport calculations, we rely on a generalized Boltzmann formalism together with a modified relaxation time scheme. We show that magnetic impurities affect the charge transport in topological insulators by inducing a transition selection rule that governs scatterings of electrons between various electronic states. We see that this selection rule is highly sensitive to the spin direction of the magnetic impurities as well as the position of the Fermi level. According to this selection rule and depending on the position of the Fermi level, two different transport regimes are realized in magnetic topological thin films. In one of these regimes, our findings show that a dissipation less charge current can be generated. In other words, even if there are many magnetic impurities in the system, electrons do not notice them and, remarkably, conduct charge without dissipation. Outside this regime, the charge transport is always dissipative and its sensitivity to the spatial orientation of the magnetic impurities can be effectively modulated by a substrate or gate voltage. In this doctoral thesis, we also explore the anomalous Hall effect (AHE) on the surface of 3D magnetic topological insulators. The AHE is generated by three mechanisms: the intrinsic effect (owing to a nonzero Berry curvature), the side jump effect, and the skew scattering effect. They compete to dominate the AHE in distinct regimes. Analytically, we calculate the contributions of all three mechanisms to the scattering of massive Dirac fermions by magnetic impurities. Our results reveal three transport regimes based on the relative importance of the engaged mechanisms. The identification of these three distinctive transport regimes can assist experimentalists in achieving a regime in which each contribution is dominant over the others, allowing them to measure them separately. Typically, this is not feasible empirically since the total value of the experimentally observed AHE conceals the specific information of each of the three contributions. Based on our analytical calculations, we prove that the AHE can change sign by varying the orientation of the surface magnetization, the concentration of impurities, and the location of the Fermi level, which is consistent with previous experimental findings. In addition, we show that by suitably adjusting the given parameters, any contribution to the AHE, or even the entire AHE, can be turned off. For example, in a system with in-plane magnetization, one can turn off the AHE by pushing the system into the completely metallic regime. Furthermore, we demonstrate that any contribution to the AHE, or even the whole AHE, can be turned off by appropriately changing the provided parameters. For example, in a system with in-plane magnetization, the AHE can be turned off by pushing the system into the fully metallic regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182192 Serial 6973  
Permanent link to this record
 

 
Author de Barros, A.G.; Hasheminejad, N.; Kampen, J.K.; Vanlanduit, S.; Vuye, C. file  openurl
  Title Noise barriers as a road traffic noise intervention in an urban environment Type P1 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)  
  Abstract Intending to tackle road traffic noise in urban environments, noise barriers have been proven to effectively reduce environmental noise levels, leading to positive effects on noise perception by the exposed population. This work assesses the impacts of replacing an obsolete noise barrier in a site near a highway. The effects of this change were monitored via a combination of field surveys, acoustic measurements and noise maps. The results have shown that even though the barrier replacement led to a 4.1 dB reduction in the LA,eq,(15 min.), the annoyance levels of the respondents increased. Possibly, the expectations regarding the improvement of the noise barrier were not met, after a history of complaints. Additionally, existing exposure-response relationships were not successful in predicting the annoyance levels in this particular case. In this dataset, noise annoyance presented a weak link with reported health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Questions regarding the COVID-19 pandemic showed that even though the respondents were spending more time at home, they were less annoyed due to road traffic noise in the period when circulation restrictions were in place.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-989-53387-0-2 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180105 Serial 7004  
Permanent link to this record
 

 
Author Rodrigues Lavor, I. url  openurl
  Title Plasmons and electronic transport in two-dimensional materials Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 219 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract This thesis presents, in its first part, an investigation on the trembling motion of wave packets known as zitterbewegung (ZBW), in multilayer graphene, as well as in moiré excitons in twisted MoS2/WSe2 hetero-bilayers. In the last few decades, the dynamics of wave packets has been subject of many theoretical and experimental studies in various types of systems such as semiconductors, superconductors, crystalline solids and cold atoms. The discovery of graphene and moiré excitons in twisted hetero-bilayers, brought two new platforms for the investigation on time evolution of wave packets and possible observation of ZBW. This trembling motion was first theoretically predicted by Schrödinger for wave packets describing particles that obey the Dirac equation. This is exactly the case of low energy electrons in graphene, as well as of moiré exciton in twisted MoS2/WSe2 under an external applied electromagnetic field. ZBW in multilayer graphene was studied both analytically and computationally, respectively, through the Green's function and split-operator methods. In this system, it is found that ZBW depends not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Furthermore, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes. For moiré excitons in twisted MoS2/WSe2 hetero-bilayers, it is shown that, analogously to other Dirac-like particles, this system also exhibits ZBW when under a perpendicular applied field. In this case, the ZBW presents long timescales that are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moiré excitons in van der Waals heterostructures as an advantageous solidstate platform to probe zitterbewegung, broadly tunable by gating and inter-layer twist angle. In the second part of this thesis, a study into graphene plasmonic in van der Waals heterostructure (vdWhs) are treated in a linear response framework within the Random Phase Approximation and with support of the quantum electrostatic heterostructure (QEH), a DFT-based method. Since Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment, it is possible to explore this property to probe the structure and composition of van der Waals heterostructures (vdWh) placed underneath a single graphene layer. In this way, one can achieve a layer sensitivity of a single layer and differentiate between different TMDs for heterostructures thicker than 2 layers. As a consequence of this, study, the hybridization of Dirac plasmons in graphene with phonons of transition metal dichalcogenides (TMDs), when the materials are combined in so-called van der Waals heterostructures (vdWh) forming surface plasmon-phonon polaritons (SPPPs) are also investigated. It was found that it is possible to realize both strong and ultrastrong coupling regimes by tuning graphene’s Fermi energy and changing TMD layer number.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181012 Serial 7011  
Permanent link to this record
 

 
Author Maciel de Menezes, R. url  openurl
  Title Skyrmionics and magnonics in chiral ferromagnets : from micromagnetic to atomistic control Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 222 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract The precise control of skyrmionics and magnonics in magnetic materials is key to the development of novel spin-based technology and information transport applications. Essentially, the inherent stability of magnetic skyrmions (provided by their topological charge) together with their extremely small size (down to a few nanometers) and the ultralow threshold current necessary to move them in nanostructures are the main advantages of skyrmionics. Not least, magnonics offers lower power consumption compared to electronics and the excitation of high frequency (sub-100~nm wavelength) magnons makes it possible for the creation of nanometric devices for ultrafast information transport. Even though extensive research has been carried out in recent years, the precise manipulation of skyrmions and spin waves (magnons) in nanostructures is not fully mastered and needs to be addressed before making functional skyrmionic and magnonic devices. In this thesis, we reveal multiple alternatives for the manipulation of skyrmions and spin-waves in different materials, such as bulk chiral magnets, heterochiral structures, magnet-supperconductor hybrids and two-dimentional magnetic materials. We make use of a multiscale model to numerically simulate the magnetic states at each considered material, from micromagnetic to atomistic control. We first explore the different nucleation mechanisms, activation energy, and the time evolution of the skyrmion formation in chiral magnetic films, crucial for the realization of skyrmion-based devices. We show that the skyrmion lattice is formed from the conical phase progressively, most probably by the formation of chiral bobbres, followed by the cylindrical growth of individual skyrmions from the film surface. That reflects a rod-like (one-dimensional) nucleation of the skyrmion phase, with an activation barrier of several electronvolts per skyrmion for the case of MnSi (Manganese monosilicide). In addition, we reveal the interesting blinking (creation-annihilation) behavior of skyrmions close to the phase boundary between the conical and skyrmion phases, where we recall that such switching between topologically distinct states has been proposed as a bit operation for information storage. Next, we discuss the motion of ferromagnetic and antiferromagnetic skyrmions in heterochiral magnets. We report the characteristic deflection of ferromagnetic skyrmions when moving across a heterochiral interface, where the extent of such deflection is tuned by the applied spin-polarized current and the magnitude of Dzyaloshinskii-Moriya interaction. Following, we show that the antiferromagnetic skyrmion achieves much higher velocities than its ferromagnetic counterpart, yet experiences far stronger confinement in nanoengineered heterochiral tracks, which reinforces antiferromagnetic skyrmions as a favorable choice for skyrmion-based devices. After that, we study the interesting coupling of magnetic skyrmions and superconducting vortices in magnet-superconductor heterostructures. We perform numerical simulations, based on experimental observations, to demonstrate that the stray field of magnetic skyrmions can nucleate antivortices in an adjacent superconducting film, giving rise to a hybrid topological object, the skyrmion-vortex pair, which harbor promising features for skyrmionics and quantum computing applications. We then explore the manipulation of a single skyrmion-vortex pair when currents are applied into both superconducting and magnetic parts of the heterostructure, which is of importance for the facilitated skyrmion guidance in racetrack applications. Afterwards, we make use of the high tunability of magnetic parameters in two-dimensional magnetic materials to reveal the rich phase diagram of exotic magnetic configurations in magnetic monolayers with suppressed nearest-neighbour exchange, where we show that several unique cycloidal, checkerboard, row-wise and spin-ice states are stabilized by the competition between the second-nearest-neighbor exchange, Dzyaloshinskii-Moriya, and dipolar interactions. Additionally, we show the coexistence of ferromagnetic and antiferromagnetic spin-cycloids, as well as novel types of skyrmions and chiral domain walls. Finally, in the last part of the thesis, we present the spin wave properties in the two-dimensional magnetic materials CrBr$3$ and CrI$3$. Using spin-dynamics simulations parametrized from first principles, we reveal that the spin wave dispersion in such materials can be tuned in a broad range of frequencies by strain-engineering, and that a designed pattern of strain, as well as structural defects (halide vacancies) can be turned useful in the design of spin-wave guides. Lastly, we discuss the realization of magnonic crystals by moiré-periodic modulation of magnetic parameters in van der Waals heterostructures, where we show that the several nanometer small periodicities in such samples are ideal for the interference of terahertz spin waves. Recalling the wide range of possibilities for manipulating spin waves in such two-dimensional materials, we therefore suggest these systems as a front-runner for prospective terahertz magnonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184244 Serial 7019  
Permanent link to this record
 

 
Author Gonzalez Garcia, A. url  openurl
  Title Tuning the properties of group III-As in the thinnest limit : a theoretical study of single layer and 2D-heterostructures Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages xvii, 175 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract In this thesis, a first-principles research to tune the physical properties of group III-V materials in the thinnest limit is carried out. Among the different methods to tune the mechanical, electronic and magnetic properties of these graphene related materials, we use: two-dimensional (2D) multilayers, straintronics, hydrogen functionalization, and transition metal adsorption. The first part of this research is devoted to a complete characterization of the structural, electronic, mechanical and vibrational properties of 2D group III-As monolayers, obtained from density functional theory. Our findings are used to understand the contribution of the  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182959 Serial 7040  
Permanent link to this record
 

 
Author de Paula Miranda, L. url  openurl
  Title Electronic transport in two dimensional systems with defects Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 104 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract The pursuit for the next generation of nanodevices made scientists focus the attention to two dimensional materials. Experimental works of two dimensional materials are hardly free of structural defects, which, in turn, modify drastically the physical properties of its defect-free counterpart. In this work the presence of structural defects is study in two different materials. First, the dependence of the Hall, bend and longitudinal resistances to a perpendicular magnetic field and to vacancy defects in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model in combination with the Landauer-Büttiker formalism is used to calculate the energy spectrum, the lead-to-lead transmissions, and the Hall and bend resistances of the system. It is shown that the terminals with zigzag edge orientation are responsible for the absence of quantized plateaus in the Hall resistance and peaks in the longitudinal resistance. A negative bend resistance in the ballistic regime is found due to the presence of high- and low- energy transport modes in the armchair and zigzag terminals, respectively. The system density of states, with single vacancy defects, shows that the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus in the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of vacancies in the regime where the quantized plateaus are destroyed and a diffusive regime appears in the bend resistance are investigated. Next, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evidence of vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191340 Serial 7151  
Permanent link to this record
 

 
Author Jiang, J. file  openurl
  Title Ginzburg-Landau dynamical simulations on the nonreciprocal transport properties of two-dimensional superconductors Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages XII, 79 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract The nonreciprocal charge transport property which depends on the polarity of the applied current, such as the diode effect and the rectification effect, is of great importance for both theoretical research and engineering application. The nonreciprocal transport property in superconductors generally requires to break both the spatial inversion symmetry and the time-reversal symmetry, and therefore becomes one of the fundamental issues in superconductivity. Of particular interest, the superconducting diode effect, which exhibits one-way superconductivity, can potentially be applied to dissipationless diode devices, as a consequence has received extensive attention in recent years. In this Ph. D thesis, we simulate vortex dynamics with heat dissipation by numerically solving time-dependent Ginzburg-Landau equations and heat transfer equation. The nonreciprocal transport properties of the following three superconducting systems are studied. We study a superconducting film patterned with a conformal pinning array and find a giant rectification effect which is consistent with the experimental observation. In presence of the funneling effect due to the geometry of the conformal pinning array, Joule heating of the accumulating vortices creates hot spots and drives the sample to the normal state. Meanwhile, the density gradient of vortex does not match the gradient of pinning. The two mechanisms together lead to the giant rectification effect. We study the nonreciprocal charge transport property in a pinning-free superconducting nano-ring. We systematically calculate the response of the ratchet signal to various parameters in both D.C. and A.C. currents. By analyzing the vortex potential, we find that the nonreciprocal transport property is caused by the asymmetry potential barriers for vortex entry and exit. We study a superconductor/nanoscale-magnetic-dot hybrid structure. It takes advantage of the external current to control the nucleation of vortex-antivortex pairs, and can produce superconducting diode effect without applied magnetic fields. Our vortex dynamics simulation details the progress of the superconducting-normal phase transition due to motion of vortex pairs and heat dissipation. The nonreciprocal transport properties of the above three systems are all based on the broken symmetry of spatial inversion, which is caused by the anisotropic pinning array, the asymmetric geometry, and the nonuniform distribution of the magnetic field, respectively. The mechanisms we discuss in this thesis do not require special property of the materials and thus can be applied to any kinds of conventional superconductors. The present studies would provide solid theoretical basis for the future design and application of the dissipationless superconducting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188525 Serial 7168  
Permanent link to this record
 

 
Author Magalhães Cunha, S. url  openurl
  Title Wave-packet dynamics and electronic transport properties in 2D materials Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 219 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract This piece of work is twofold. First, the time evolution of wave-packets in 2D systems is analyzed by the Split-Operator technique in three different scenarios: in multilayer phosphorene, the transient oscillations in the time-dependent average of position and momentum were observed due to the zitterbewegung effect, and the wave packet propagates non-uniformly along the space deforming itself into an elliptical shape. These results were corroborated by the Green’s function formalism except for large values of the wave-vector and long times; in 2D semiconductor quantum wires (QWs) with anisotropic effective masses and different angle orientations with respect to the anisotropic axis. We have shown that the greater this angle, the smaller is the energy levels spacing implying in an increase of the accessible electronic states. Additionally, for non-null magnetic field, the quantum Hall edge states are significantly affected by the edge orientation. In the anisotropic case damped oscillations in the average values of velocity in both x and y directions where obtained. Theses oscillations are originated by the QW geometry but also from subwavepackets with different momentum orientations, whereas for isotropic QWs the wavepacket disperses without splitting; in the third scenario the split-operator technique was used to study the Landau levels, the wave packet trajectories and velocities of electrons in graphene at low-energy regime described by a modified Dirac equation where the momentum-operator is written in a generalized form as result of applying the position-dependent translation operator formalism (PDTO). In the second part of this thesis, the electronic and tunneling properties of α − T3 lattices were studied. Electrons in these lattices behave analogous to integer-spin Dirac Fermions. The presence of a third atomic site in the unit cell leads to a flat band in the energy spectrum, providing unique electronic and tunneling properties. The presence of a super-periodic potential and the inclusion of symmetry-breaking terms results in deviations of the atomic equivalence between the atomic sites affecting the Dirac points and the band-gap. Small deviations in the equivalence between the atomic sites and the number of barriers change the transmission properties in these lattices. Additionally, new tunneling regions are possible by adjusting the symmetry between the atomic sites and affect the omnidirectional total transmission called super-Klein tunneling observed in these lattices. We compare those results to the tunneling probabilities through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189191 Serial 7227  
Permanent link to this record
 

 
Author Kocabas, T.; Cakir, D.; Gulseren, O.; Ay, F.; Perkgoz, N.K.; Sevik, C. doi  openurl
  Title A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal  
  Volume 10 Issue 16 Pages 7803-7812  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The investigation of thermal transport properties of novel two-dimensional materials is crucially important in order to assess their potential to be used in future technological applications, such as thermoelectric power generation. In this respect, the lattice thermal transport properties of the monolayer structures of group VA elements (P, As, Sb, Bi, PAs, PSb, PBi, AsSb, AsBi, SbBi, P3As1, P3Sb1, P1As3, and As3Sb1) with a black phosphorus like puckered structure were systematically investigated by first-principles calculations and an iterative solution of the phonon Boltzmann transport equation. Phosphorene was found to have the highest lattice thermal conductivity, , due to its low average atomic mass and strong interatomic bonding character. As a matter of course, anisotropic was obtained for all the considered materials, owing to anisotropy in frequency values and phonon group velocities calculated for these structures. However, the determined linear correlation between the anisotropy in the values of P, As, and Sb is significant. The results corresponding to the studied compound structures clearly point out that thermal (electronic) conductivity of pristine monolayers might be suppressed (improved) by alloying them with the same group elements. For instance, the room temperature of PBi along the armchair direction was predicted to be as low as 1.5 W m(-1) K-1, whereas that of P was predicted to be 21 W m(-1) K-1. In spite of the apparent differences in structural and vibrational properties, we peculiarly revealed an intriguing correlation between the values of all the considered materials as = c(1) + c(2)/m(2), in particular along the zigzag direction. Furthermore, our calculations on compound structures clearly showed that the thermoelectric potential of these materials can be improved by suppressing their thermal properties. The presence of ultra-low values and high electrical conductivity (especially along the armchair direction) makes this class of monolayers promising candidates for thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431030000054 Publication Date 2018-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193785 Serial 7388  
Permanent link to this record
 

 
Author Yorulmaz, U.; Demiroglu, I.; Cakir, D.; Gulseren, O.; Sevik, C. doi  openurl
  Title A systematicalab-initioreview of promising 2D MXene monolayers towards Li-ion battery applications Type A1 Journal article
  Year 2020 Publication JPhys Energy Abbreviated Journal  
  Volume 2 Issue 3 Pages 032006  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials have been attracting increasing interests because of their outstanding properties for Lithium-ion battery applications. In particular, a material family called MXenes (Mn+1Cn, where n = 1, 2, 3) have been recently attracted immense interest in this respect due to their incomparable fast-charging properties and high capacity promises. In this article, we review the state-of-the-art computational progress on Li-ion battery applications of MXene materials in accordance with our systematical DFT calculations. Structural, mechanical, dynamical, and electrical properties of 20 distinct MXene (M: Sc, Ti, V, Cr, Nb, Mo, Hf, Ta, W, and Zr) have been discussed. The battery performances of these MXene monolayers are further investigated by Li-ion binding energies, open circuit voltage values, and Li migration energy barriers. The experimental and theoretical progress up to date demonstrates particularly the potential of non-terminated or pristine MXene materials in Li ion-storage applications. Stability analyses show most of the pristine MXenes should be achievable, however susceptible to the development progress on the experimental growth procedures. Among pristine MXenes, Ti2C, V2C, Sc2C, and Zr2C compounds excel with their high charge/discharge rate prospect due to their extremely low Li diffusion energy barriers. Considering also their higher predicted gravimetric capacities, Sc, Ti, V, and Zr containing MXenes are more promising for their utilization in energy storage applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569868600001 Publication Date 2020-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2515-7655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited Open Access (up)  
  Notes Approved Most recent IF: 6.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:193748 Serial 7399  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Ab-initio study of magnetically intercalated Tungsten diselenide Type P1 Proceeding
  Year 2020 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 23-OCT 06, 2020 Abbreviated Journal  
  Volume Issue Pages 97-100  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the effect of intercalation of third row transition metals (Co, Cr, Fe, Mn, Ti and V) in the layers of WSe2. Using density functional theory (DFT), we investigate the structural stability. We also compute the DFT energies of various magnetic spin configurations. Using these energies, we construct a Heisenberg Hamiltonian and perform a Monte Carlo study on each WSe2 + intercalant system to estimate the Curie or Neel temperature. We find ferromagnetic ground states for Ti and Cr intercalation, with Curie temperatures of 31K and 225K, respectively. In Fe-intercalated WSe2, we predict that antiferromagnetic ordering is present up to 564K. For V intercalation, we find that the system exhibits a double phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000636981000025 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-763-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178345 Serial 7402  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D. doi  openurl
  Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
  Year 2019 Publication ACS applied energy materials Abbreviated Journal  
  Volume 2 Issue 2 Pages 1251-1258  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459948900037 Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193759 Serial 7414  
Permanent link to this record
 

 
Author da Costa, L.F.; de Barros, A.G.; de Figueiredo Lopes Lucena, L.C.; de Figueiredo Lopes Lucena, A.E. doi  openurl
  Title Asphalt mixture reinforced with banana fibres Type A1 Journal article
  Year 2020 Publication Road Materials And Pavement Design Abbreviated Journal Road Mater Pavement  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Stone Matrix Asphalt (SMA) is a gap-graded mixture which requires high contents of asphalt binder. To prevent draindown, natural or synthetic fibres and polymer-modified asphalt binders are conventionally used in SMA. Banana agribusiness is one of the major sources of post-harvest residue in Brazil. Amongst those residues, fibres extracted from the pseudostem of the banana plant are resistant and used in diverse purposes. The present study assesses the incorporation of fibres from the pseudostem of the banana plant in an SMA mixture. The fibre contents and lengths capable to prevent binder draindown were evaluated from draindown tests. Mechanical properties of an SMA mixture stabilised with different banana fibre lengths were analysed through the tests of Marshall stability, modified Lottman, Indirect Tensile Strength and Cantabro. The results indicated that the fibres studied are a viable alternative for SMA, stabilising draindown and improving its mechanical performance, especially at the length of 20 mm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508499900001 Publication Date 2020-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-0629; 2164-7402 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access (up)  
  Notes Approved Most recent IF: 3.7; 2020 IF: 1.401  
  Call Number UA @ admin @ c:irua:178727 Serial 7495  
Permanent link to this record
 

 
Author Karaaslan, Y.; Yapicioglu, H.; Sevik, C. doi  openurl
  Title Assessment of Thermal Transport Properties of Group-III Nitrides: A Classical Molecular Dynamics Study with Transferable Tersoff-Type Interatomic Potentials Type A1 Journal article
  Year 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 13 Issue 3 Pages 034027  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, by means of classical molecular dynamics simulations, we investigate the thermal-transport properties of hexagonal single-layer, zinc-blend, and wurtzite phases of BN, AlN, and GaN crystals, which are very promising for the application and design of high-quality electronic devices. With this in mind, we generate fully transferable Tersoff-type empirical interatomic potential parameter sets by utilizing an optimization procedure based on particle-swarm optimization. The predicted thermal properties as well as the structural, mechanical, and vibrational properties of all materials are in very good agreement with existing experimental and first-principles data. The impact of isotopes on thermal transport is also investigated and between approximately 10 and 50% reduction in phonon thermal transport with random isotope distribution is observed in BN and GaN crystals. Our investigation distinctly shows that the generated parameter sets are fully transferable and very useful in exploring the thermal properties of systems containing these nitrides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518820200003 Publication Date 2020-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access (up)  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.808  
  Call Number UA @ admin @ c:irua:193766 Serial 7508  
Permanent link to this record
 

 
Author Ozbal, G.; Senger, R.T.; Sevik, C.; Sevincli, H. doi  openurl
  Title Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue 8 Pages 085415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Combining first-principles calculations with Landauer-Mittiker formalism, ballistic thermoelectric transport properties of semiconducting two-dimensional transition metal dichalcogenides (TMDs) and oxides (TMOs) (namely MX2 with M = Cr, Mo, W, Ti, Zr, Hf; X = O, S, Se, Te) are investigated in their 2H and 1T phases. Having computed structural, as well as ballistic electronic and phononic transport properties for all structures, we report the thermoelectric properties of the semiconducting ones. We find that 2H phases of four of the studied structures have very promising thermoelectric properties, unlike their 1T phases. The maximum room temperature p-type thermoelectric figure of merit (ZT) of 1.57 is obtained for 2H-HfSe2, which can be as high as 3.30 at T = 800 K. Additionally, 2H-ZrSe2, 2H-ZrTe2, and 2H-HfS2 have considerable ZT values (both nand p-type), that are above 1 at room temperature. The 1T phases of Zr and Hf-based oxides possess relatively high power factors, however their high lattice thermal conductance values limit their ZT values to below 1 at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480389100007 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193773 Serial 7549  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
  Year 2018 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal  
  Volume Issue Pages 92-96  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516619300024 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:181281 Serial 7579  
Permanent link to this record
 

 
Author De Beule, C. url  openurl
  Title Confined quantum systems in topological insulator heterostructures Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 141 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147217 Serial 7725  
Permanent link to this record
 

 
Author Ozden, A.; Ay, F.; Sevik, C.; Perkgoz, N.K. doi  openurl
  Title CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio Type A1 Journal article
  Year 2017 Publication Japanese journal of applied physics Abbreviated Journal  
  Volume 56 Issue 6s:[1] Pages 06gg05  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Single-layer, large-scale two-dimensional material growth is still a challenge for their wide-range usage. Therefore, we carried out a comprehensive study of monolayer MoS2 growth by CVD investigating the influence of growth zone configuration and precursors ratio. We first compared the two commonly used approaches regarding the relative substrate and precursor positions, namely, horizontal and face-down configurations where facedown approach is found to be more favorable to obtain larger flakes under identical growth conditions. Secondly, we used different types of substrate holders to investigate the influence of the Mo and S vapor confinement on the resulting diffusion environment. We suggest that local changes of the S to Mo vapor ratio in the growth zone is a key factor for the change of shape, size and uniformity of the resulting MoS2 formations, which is also confirmed by performing depositions under different precursor ratios. Therefore, to obtain continuous monolayer films, the S to Mo vapor ratio is needed to be kept within a certain range throughout the substrate. As a conclusion, we obtained monolayer triangles with a side length of 90 mu m and circles with a diameter of 500 mu m and continuous films with an area of 85 0 mu m x 1 cm when the S-to-Mo vapor ratio is optimized. (C) 2017 The Japan Society of Applied Physics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401059800003 Publication Date 2017-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-4922; 1347-4065 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193783 Serial 7747  
Permanent link to this record
 

 
Author Yorulmaz, B.; Ozden, A.; Sar, H.; Ay, F.; Sevik, C.; Perkgoz, N.K. doi  openurl
  Title CVD growth of monolayer WS2 through controlled seed formation and vapor density Type A1 Journal article
  Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal  
  Volume 93 Issue Pages 158-163  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large area, single layer WS2 has a high potential for use in optoelectrical devices with its high photo-luminescence intensity and low response time. In this work, we demonstrate a systematic study of controlled tungsten disulfide (WS2) monolayer growth using chemical vapor deposition (CVD) technique. With a detailed investigation of process parameters such as H-2 gas inclusion into the main carrier gas, growth temperature and duration, we have gained insight into two-dimensional (2D) WS2 synthesis through controlling the seed formations and the radical vapor density associated with WO3. We confirm that H-2 gas, when included to the carrier gas, is directly involved in WO3 reduction due to its reductive reagent nature, which provides a more effective sulfurization and monolayer formation process. Additionally, by changing the CVD growth configuration, hence, increasing the tungsten related vapor density and confining the reactant radicals, we succeed in realizing larger WS(2 )monolayers, which is still a technological challenge in order to utilize these structures for practical applications. Further optimization of the growth procedure is demonstrated by tuning the growth duration to prevent the excess seed formations and additional layers which will possibly limit the device performance of the monolayer flakes or films when applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457727300018 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193782 Serial 7748  
Permanent link to this record
 

 
Author Polanco, C.A.; Pandey, T.; Berlijn, T.; Lindsay, L. url  doi
openurl 
  Title Defect-limited thermal conductivity in MoS₂ Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal  
  Volume 4 Issue 1 Pages 014004-14009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The wide measured range of thermal conductivities (k) for monolayer MoS2 and the corresponding incongruent calculated values in the literature all suggest that extrinsic defect thermal resistance is significant and varied in synthesized samples of this material. Here we present defect-mediated thermal transport calculations of MoS2 using interatomic forces derived from density functional theory combined with Green's function methods to describe phonon-point-defect interactions and a Peierls-Boltzmann formalism for transport. Conductivity calculations for bulk and monolayer MoS2 using different density functional formalisms are compared. Nonperturbative first-principles methods are used to describe defect-mediated spectral functions, scattering rates, and phonon k, particularly from sulfur vacancies (VS), and in the context of the plethora of measured and calculated literature values. We find that k of monolayer MoS2 is sensitive to phonon-VS scattering in the range of experimentally observed densities, and that first-principles k calculations using these densities can explain the range of measured values found in the literature. Furthermore, measured k values for bulk MoS2 are more consistent because VS defects are not as prevalent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000619240000001 Publication Date 2020-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access (up)  
  Notes Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:190510 Serial 7757  
Permanent link to this record
 

 
Author Doevenspeck, J.; Zografos, O.; Gurunarayanan, S.; Lauwereins, R.; Raghavan, P.; Sorée, B. url  doi
openurl 
  Title Design and simulation of plasmonic interference-based majority gate Type A1 Journal article
  Year 2017 Publication AIP advances Abbreviated Journal  
  Volume 7 Issue 6 Pages 065116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Major obstacles in current CMOS technology, such as the interconnect bottleneck and thermal heat management, can be overcome by employing subwavelength-scaled light in plasmonic waveguides and devices. In this work, a plasmonic structure that implements the majority (MAJ) gate function is designed and thoroughly studied through simulations. The structure consists of three merging waveguides, serving as the MAJ gate inputs. The information of the logic signals is encoded in the phase of transmitted surface plasmon polaritons (SPP). SPPs are excited at all three inputs and the phase of the output SPP is determined by theMAJof the input phases. The operating dimensions are identified and the functionality is verified for all input combinations. This is the first reported simulation of a plasmonic MAJ gate and thus contributes to the field of optical computing at the nanoscale. (C) 2017 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404621200036 Publication Date 2017-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152632 Serial 7764  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: