toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, D.Y.; Zeng, Y.J.; Pereira, L.M.C.; Batuk, D.; Hadermann, J.; Zhang, Y.Z.; Ye, Z.Z.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Van Haesendonck, C.; pdf  doi
openurl 
  Title Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 3 Pages 033909-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5K and the negative MR survives up to 250K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000322202700071 Publication Date 2013-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access (up)  
  Notes Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:110765 Serial 126  
Permanent link to this record
 

 
Author Zhao, S.-X.; Zhang, Y.-R.; Gao, F.; Wang, Y.-N.; Bogaerts, A. url  doi
openurl 
  Title Bulk plasma fragmentation in a C4F8 inductively coupled plasma : a hybrid modelling study Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 243303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000357613900009 Publication Date 2015-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access (up)  
  Notes Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:126477 Serial 261  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access (up)  
  Notes Approved Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial 429  
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Zhang, Q.Z.; Bogaerts, A. pdf  doi
openurl 
  Title Computational study of plasma sustainability in radio frequency micro-discharges Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 19 Pages 193301-193311  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000336920200010 Publication Date 2014-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access (up)  
  Notes Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:116948 Serial 458  
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Electromagnetic effects in high-frequency large-area capacitive discharges : a review Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 33 Issue 33 Pages 020801  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In traditional capacitively coupled plasmas, the discharge can be described by an electrostatic model, in which the Poisson equation is employed to determine the electrostatic electric field. However, current plasma reactors are much larger and driven at a much higher frequency. If the excitation wavelength k in the plasma becomes comparable to the electrode radius, and the plasma skin depth d becomes comparable to the electrode spacing, the electromagnetic (EM) effects will become significant and compromise the plasma uniformity. In this regime, capacitive discharges have to be described by an EM model, i.e., the full set of Maxwells equations should be solved to address the EM effects. This paper gives an overview of the theory, simulation and experiments that have recently been carried out to understand these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel display industries. Furthermore, some methods for improving the plasma uniformity are also described and compared.  
  Address  
  Corporate Author Thesis  
  Publisher A v s amer inst physics Place of Publication Melville Editor  
  Language Wos 000355739500007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 10 Open Access (up)  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:123541 Serial 903  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Gao, F.; Li, X.-C.; Bogaerts, A.; Wang, Y.-N. url  doi
openurl 
  Title Fluid simulation of the bias effect in inductive/capacitive discharges Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 33 Issue 33 Pages 061303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitive discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0300V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120V at 2MHz and 90V at 27.12 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365503800020 Publication Date 2015-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 9 Open Access (up)  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:126824 Serial 1229  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 1 : transient behaviour of electrodynamics and power deposition Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 1 Pages 015202-015202,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model coupled with the full set of Maxwell equations is established to investigate the phase-shift effect on the transient behaviour of electrodynamics and power deposition in a hydrogen capacitively coupled plasma. The effect has been examined at 13.56 MHz and 100 MHz, respectively, because of the different phase-shift modulation when the electromagnetic effects are dominant. The results indicate that the spatiotemporal distributions of the plasma characteristics obtained for various phase-shift cases are obviously different both in shape and especially in absolute values. Indeed, when the phase difference varies from 0 to π, there is an increase in the electron flux, thus the power deposition becomes more pronounced. At the frequency of 13.56 MHz, the axial electron flux in the bulk plasma becomes uniform along the z-axis, and the radial electron flux exhibits two peaks within one period at the reverse-phase case, whereas the oscillation is less pronounced at the in-phase case. Furthermore, in the very high frequency discharge, the radial electron flux is alternately positive and negative with four peaks during one period, and the ionization mainly occurs in the sheath region, due to the prominent power deposition there at a phase difference equal to π.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000298290000011 Publication Date 2011-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 57 Open Access (up)  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:92851 Serial 1230  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 2 : radial uniformity of the plasma characteristics Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 1 Pages 015203-015203,13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (phgr = 0), and the best radial uniformity is obtained at phgr = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at phgr = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (phgr = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at phgr = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition Pz in the centre and the decreasing power density Pr at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density. The calculation results illustrate that the radial uniformity of the various plasma characteristics is strongly dependent on the applied frequency and the phase shift between both power sources, which is important to realize, for controlling the uniformity of the plasma etch and deposition processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000298290000012 Publication Date 2011-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 15 Open Access (up)  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:92852 Serial 1231  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in Ar/CF4 capacitively coupled plasmas Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 48 Pages 485204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is employed to investigate an Ar/CF4 capacitively coupled plasma, focusing on the phase-shift effect on the plasma characteristics at various frequencies and gas mixture ratios. When the discharge is sustained by a single frequency at 13.56 MHz in an Ar/CF4 mixture with a ratio of 0.9/0.1, no obvious difference is detected between the electron densities obtained in the so-called electrostatic model (with only the static electric fields taken into account) and the electromagnetic model (which includes the electromagnetic effects). However, as the frequency increases to 60 and 100 MHz, the difference becomes distinct, due to the significant influence of the electromagnetic effects. The phase-shift effect on the plasma radial uniformity has also been investigated in a dual frequency discharge, i.e. when the top driven source is switched on with a phase difference phiv ranging from 0 to π, in the frequency range 13.56100 MHz. At low concentration of CF4 (10%), Ar+ ions are the major positive ions in the entire range of frequencies. When the frequency is low, i.e. 13.56 MHz, the Ar+ density exhibits an off-axis peak at phiv = 0 due to the edge effect, and a better uniformity caused by the phase-shift modulation is obtained at phiv = π. At 60 MHz, the Ar+ density varies from edge-peaked at phiv = 0 to uniform (i.e. at phiv = 0.53π), and finally at phiv = π, a broad maximum is observed at the centre due to the standing-wave effect. As the frequency increases to 100 MHz, the best radial uniformity is reached at 0.25π, and the maximum moves again towards the radial wall in the reverse-phase case (phiv = π) due to the dominant skin effect. When the frequency is fixed at 100 MHz, the phase-shift control shows a different behaviour at a high concentration of CF4. For instance, the ${\rm CF}_3  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311148300011 Publication Date 2012-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access (up)  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:101754 Serial 1232  
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 43 Pages 435201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A one-dimensional, implicit particle-in-cell Monte Carlo collision model is used to simulate the plasma kinetic properties at a steady state in a parallel-plate direct current argon glow microdischarge under various operating conditions, such as driving voltage (301000 V) and gap size (101000 µm) at atmospheric pressure. First, a comparison between rf and dc modes is shown for the same pressure, driving voltage and gap spacing. Furthermore, the effect of gap size scaling (in the range of 101000 µm) on the breakdown voltage, peak electron density and peak electron current density at the breakdown voltage is examined. The breakdown voltage is lower than 150 V in all gaps considered. The microdischarge is found to have a neutral bulk plasma region and a cathode sheath region with size varying with the applied voltage and the discharge gap. In our calculations, the electron and ion densities are of the order of 10181023 m−3, which is in the glow discharge limit, as the ionization degree is lower than 1% . The electron energy distribution function shows a two-energy group distribution at a gap of 10 µm and a three-energy group distribution at larger gaps such as 200 µm and 1000 µm, emphasizing the importance of the gap spacing in dc microdischarges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000343150500011 Publication Date 2014-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access (up)  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:119152 Serial 1759  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A. url  doi
openurl 
  Title Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 33 Issue 33 Pages 021310  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000355739500026 Publication Date 2015-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 3 Open Access (up)  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:122650 Serial 2107  
Permanent link to this record
 

 
Author Jiang, W.; Zhang, Y.; Bogaerts, A. url  doi
openurl 
  Title Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors Type A1 Journal article
  Year 2014 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 16 Issue Pages 113036  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In metallized film capacitors, there exists an air gap of about 0.2 μm between the films, with a pressure ranging generally from 130 atm. Because of the created potential difference between the two films, a microdischarge is formed in this gap. In this paper, we use an implicit particle-in-cell Monte Carlo collision simulation method to study the discharge properties in this direct-current microdischarge with 0.2 μm gap in a range of different voltages and pressures. The discharge process is significantly different from a conventional high pressure discharge. Indeed, the high electric field due to the small gap sustains the discharge by field emission. At low applied voltage (~15 V), only the electrons are generated by field emission, while both electrons and ions are generated as a stable glow discharge at medium applied voltage (~50 V). At still higher applied voltage (~100 V), the number of electrons and ions rapidly multiplies, the electric field reverses, and the discharge changes from a glow to an arc regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000346763400006 Publication Date 2014-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited Open Access (up)  
  Notes Approved Most recent IF: 3.786; 2014 IF: 3.558  
  Call Number UA @ lucian @ c:irua:120455 Serial 2393  
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Zhang, Y.Y.; Peeters, F.M. url  doi
openurl 
  Title Optoelectronic properties of ABC-stacked trilayer graphene Type A1 Journal article
  Year 2013 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 250 Issue 1 Pages 86-94  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study on the optoelectronic properties of ABC-stacked trilayer graphene (TLG). The optical conductance and light transmittance are evaluated through using the energy-balance equation derived from the Boltzmann equation for an air/graphene/dielectric-wafer system in the presence of linearly polarized radiation field. The results obtained from two band structure models are examined and compared. For short wavelength radiation, the universal optical conductance sigma(0) = 3e(2)/(4h) can be obtained. Importantly, there exists an optical absorption window in the radiation wavelength range 10-200 mu m, which is induced by different transition energies required for inter- and intra-band optical absorption channels. As a result, we find that the position and width of this window depend sensitively on temperature and carrier density of the system, especially the lower frequency edge. There is a small characteristic absorption peak at about 82 mu m where the largest interband transition states exist in the ABC-stacked TLG model, in contrast to the relatively smooth curves in a simplified model. These theoretical results indicate that TLG has some interesting and important physical properties which can be utilized to realize infrared or THz optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000313347500011 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 6 Open Access (up)  
  Notes ; This work was supported by the National Natural Science Foundation of China (grant no. 10974206), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. One of us (F.M.P.) was a Specially Appointed Foreign Professor of the Chinese Academy of Sciences. ; Approved Most recent IF: 1.674; 2013 IF: 1.605  
  Call Number UA @ lucian @ c:irua:110109 Serial 2495  
Permanent link to this record
 

 
Author Zhang, Y.; Fischetti, M.V.; Sorée, B.; Magnus, W.; Heyns, M.; Meuris, M. doi  openurl
  Title Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 8 Pages 083704,1-083704,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present comprehensive calculations of the low-field hole mobility in Ge p-channel inversion layers with SiO2 insulator using a six-band k·p band-structure model. The cases of relaxed, biaxially, and uniaxially (both tensily and compressively) strained Ge are studied employing an efficient self-consistent methodmaking use of a nonuniform spatial mesh and of the Broyden second methodto solve the coupled envelope-wave function k·p and Poisson equations. The hole mobility is computed using the KuboGreenwood formalism accounting for nonpolar hole-phonon scattering and scattering with interfacial roughness. Different approximations to handle dielectric screening are also investigated. As our main result, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress similarly to the well-known case of Si. Comparison with experimental data shows overall qualitative agreement but with significant deviations due mainly to the unknown morphology of the rough Ge-insulator interface, to additional scattering with surface optical phonon from the high- insulator, to Coulomb scattering interface traps or oxide chargesignored in our calculationsand to different channel structures employed.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000271358100050 Publication Date 2009-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access (up)  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:80137 Serial 2617  
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Jiang, W.; Bogaerts, A. url  doi
openurl 
  Title Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 17 Issue 17 Pages 083056  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of −20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of $4\times {10}  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000360957800003 Publication Date 2015-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 22 Open Access (up)  
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558  
  Call Number c:irua:127650 Serial 3777  
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C. pdf  doi
openurl 
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 64 Issue 64 Pages 278-285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000376547700033 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 7 Open Access (up)  
  Notes Approved Most recent IF: 4.164  
  Call Number UA @ lucian @ c:irua:134164 Serial 4251  
Permanent link to this record
 

 
Author Vermang, B.; Brammertz, G.; Meuris, M.; Schnabel, T.; Ahlswede, E.; Choubrac, L.; Harel, S.; Cardinaud, C.; Arzel, L.; Barreau, N.; van Deelen, J.; Bolt, P.-J.; Bras, P.; Ren, Y.; Jaremalm, E.; Khelifi, S.; Yang, S.; Lauwaert, J.; Batuk, M.; Hadermann, J.; Kozina, X.; Handick, E.; Hartmann, C.; Gerlach, D.; Matsuda, A.; Ueda, S.; Chikyow, T.; Felix, R.; Zhang, Y.; Wilks, R.G.; Baer, M. pdf  doi
openurl 
  Title Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices Type A1 Journal article
  Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal  
  Volume 3 Issue 9 Pages 2246-2259  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work reports on developments in the field of wide band gap Cu2ZnXY4 (with X = Sn, Si or Ge, and Y = S, Se) kesterite thin film solar cells. An overview on recent developments and the current understanding of wide band gap kesterite absorber layers, alternative buffer layers, and suitable transparent back contacts is presented. Cu2ZnGe(S,Se)(4) absorbers with absorber band gaps up to 1.7 eV have been successfully developed and integrated into solar cells. Combining a CdS buffer layer prepared by an optimized chemical bath deposition process with a 1.36 eV band gap absorber resulted in a record Cu2ZnGeSe4 cell efficiency of 7.6%, while the highest open-circuit voltage of 730 mV could be obtained for a 1.54 eV band gap absorber and a Zn(O,S) buffer layer. Employing InZnOx or TiO2 protective top layers on SnO2:In transparent back contacts yields 85-90% of the solar cell performance of reference cells (with Mo back contact). These advances show the potential as well as the challenges of wide band gap kesterites for future applications in high-efficiency and low-cost tandem photovoltaic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482057500004 Publication Date 2019-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access (up)  
  Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 640868. The synchrotron radiation experiments were performed at the SPring-8 beamline BL15XU with the approval of the NIMS Synchrotron X-ray Station (Proposals 2016A4600, 2016B4601, and 2017A4600) and at BESSY II with the approval of HZB. B. Vermang has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 715027). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161785 Serial 5404  
Permanent link to this record
 

 
Author Liang, Y.-S.; Liu, Y.-X.; Zhang, Y.-R.; Wang, Y.-N. pdf  doi
openurl 
  Title Investigation of voltage effect on reaction mechanisms in capacitively coupled N-2 discharges Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 127 Issue 13 Pages 133301  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A systematic investigation of voltage effect on the plasma parameters, especially the species densities and chemical reaction mechanisms, in the capacitive N-2 discharges is performed by employing a two-dimensional self-consistent fluid model. The validity of the numerical model is first demonstrated by the qualitative agreement of the calculated and experimental results. Then, the densities, production mechanisms, and loss mechanisms of species from simulation are examined at various voltages. It is found that all the species densities increase monotonically with the voltage, whereas their spatial profiles at lower voltages are quite different from those at higher voltages. The electrons and Nthorn 2 ions are mainly generated by the electron impact ionization of N-2 gas, while the Nthorn ions, whose density is one or two orders of magnitude lower, are mostly formed by the ionization of N atoms. The electron impact dissociation of N-2 gas dominates the generation of N atoms, which are mostly destroyed for the Nthorn ion production. As for the excited N-2 levels, the level conversion processes play a very important role in their production and depletion mechanisms, except for the electron impact excitation of the ground state N-2 molecules. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000524256700001 Publication Date 2020-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access (up)  
  Notes ; This work was financially supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11805089 and 11875101), the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-127), the Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, China (Grant No. KF1804), and the China Scholarship Council. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:168558 Serial 6555  
Permanent link to this record
 

 
Author Liu, J.-W.; Wu, S.-M.; Wang, L.-Y.; Tian, G.; Qin, Y.; Wu, J.-X.; Zhao, X.-F.; Zhang, Y.-X.; Chang, G.-G.; Wu, L.; Zhang, Y.-X.; Li, Z.-F.; Guo, C.-Y.; Janiak, C.; Lenaerts, S.; Yang, X.-Y. pdf  doi
openurl 
  Title Pd/Lewis acid synergy in macroporous Pd@Na-ZSM-5 for enhancing selective conversion of biomass Type A1 Journal article
  Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem  
  Volume Issue Pages 1-6  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Pd nanometal particles encapsulated in macroporous Na-ZSM-5 with only Lewis acid sites have been successfully synthesized by a steam-thermal approach. The synergistic effect of Pd and Lewis acid sites have been investigated for significant enhancement of the catalytic selectivity towards furfural alcohol in furfural hydroconversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000554645800001 Publication Date 2020-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited 1 Open Access (up)  
  Notes ; We acknowledge a joint DFG-NSFC project (DFG JA466/39-1, NSFC grant 51861135313). This work was also supported by National Key R&D Program of China (2017YFC1103800), NSFC (U1662134, 21711530705), Jilin Province Science and Technology Development Plan (20180101208JC), HPNSF (2016CFA033), FRFCU (19lgzd16) and ISTCP (2015DFE52870). ; Approved Most recent IF: 4.5; 2020 IF: 4.803  
  Call Number UA @ admin @ c:irua:171178 Serial 6579  
Permanent link to this record
 

 
Author Zhang, L.; Zhang, Y.-Y.; Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P. url  doi
openurl 
  Title Skyrmionic chains and lattices in s plus id superconductors Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 6 Pages 064501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510745600005 Publication Date 2020-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 7 Open Access (up)  
  Notes ; The authors acknowledge useful discussions with Yong-Ping Zhang. This research was supported by the National Natural Science Foundation of China under Grants No. 61571277 and No. 61771298. L.-F.Z. and M.V.M. acknowledge support from Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:166507 Serial 6605  
Permanent link to this record
 

 
Author Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N. url  doi
openurl 
  Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
  Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal  
  Volume Issue Pages 09003  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652552200053 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 326 Series Issue Edition  
  ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179147 Serial 6851  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 185 Issue 185 Pages 56-67  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369452000006 Publication Date 2015-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 75 Open Access (up)  
  Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446  
  Call Number c:irua:129808 Serial 3984  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25923-25934  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388429100029 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 34 Open Access (up)  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319  
Permanent link to this record
 

 
Author Bogaerts, A.; Zhang, Q.-Z.; Zhang, Y.-R.; Van Laer, K.; Wang, W. pdf  url
doi  openurl
  Title Burning questions of plasma catalysis: Answers by modeling Type A1 Journal article
  Year 2019 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 337 Issue Pages 3-14  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is promising for various environmental, energy and chemical synthesis applications, but the underlying mechanisms are far from understood. Modeling can help to obtain a better insight in these mechanisms. Some burning questions relate to the plasma behavior inside packed bed reactors and whether plasma can penetrate into catalyst pores. In this paper, we try to provide answers to these questions, by means of both fluid modeling and particle-in-cell/Monte Carlo collision simulations. We present a short overview of recent findings obtained in our group by means of modeling, i.e., the enhanced electric field near the contact points and the streamer propagation through the packing in packed bed reactors, as well as the plasma behavior in catalyst pores, to determine the minimum pore size in which plasma streamers can penetrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482179500002 Publication Date 2019-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 7 Open Access (up)  
  Notes University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc”; “CryoEtch” within Horizon2020, 657304 702604 ;We would like to thank H.-H. Kim for performing experiments to validate the modeling of streamer propagation in packed bed reactors. We acknowledge financial support from the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc” and “CryoEtch” within Horizon2020 (Grant Nos. 657304 and 702604). Approved Most recent IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:161775 Serial 5356  
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 481 Issue Pages 148684  
  Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access (up)  
  Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 8993  
Permanent link to this record
 

 
Author Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.-L.; Liu, C.-jun doi  openurl
  Title Catalyst preparation with plasmas : how does it work? Type A1 Journal article
  Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 8 Issue 3 Pages 2093-2110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalyst preparation with plasmas is increasingly attracting interest. A plasma is a partially ionized gas, consisting of electrons, ions, molecules, radicals, photons, and excited species, which are all active species for catalyst preparation and treatment. Under the influence of plasma, nucleation and crystal growth in catalyst preparation can be very different from those in the conventional thermal approach. Some thermodynamically unfavorable reactions can easily take place with plasmas. Compounds such as sulfides, nitrides, and phosphides that are produced under harsh conditions can be synthesized by plasma under mild conditions. Plasmas can produce catalysts with smaller particle sizes and controllable structure. Plasma is also a facile tool for reduction, oxidation, doping, etching, coating, alloy formation, surface treatment, and surface cleaning in a simple and direct way. A rapid and convenient plasma template removal has thus been established for zeolite synthesis. It can operate at room temperature and allows the catalyst preparation on temperature-sensitive supporting materials. Plasma is typically effective for the production of various catalysts on metallic substrates. In addition, plasma-prepared transition-metal catalysts show enhanced low-temperature activity with improved stability. This provides a useful model catalyst for further improvement of industrial catalysts. In this review, we aim to summarize the recent advances in catalyst preparation with plasmas. The present understanding of plasma-based catalyst preparation is discussed. The challenges and future development are addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Amer chemical soc Place of Publication Washington Editor  
  Language Wos 000426804100055 Publication Date 2018-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 81 Open Access (up) Not_Open_Access  
  Notes Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:150880 Serial 4963  
Permanent link to this record
 

 
Author Quintanilla, M.; Zhang, Y.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+ nanothermometers in the second biological window Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 8 Pages 2819-2828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Measuring temperature in biological environments is an ambitious goal toward supporting medical treatment and diagnosis. Minimally invasive techniques based on optical probes require very specific properties that are difficult to combine within a single material. These include high chemical stability in aqueous environments, optical signal stability, low toxicity, high emission intensity, and, essential, working at wavelengths within the biological transparency windows so as to minimize invasiveness while maximizing penetration depth. We propose CaF2:Nd3+,Y3+ as a candidate for thermometry based on an intraband ratiometric approach, fully working within the biological windows (excitation at 808 nm; emission around 1050 nm). We optimized the thermal probes through the addition of Y3+ as a dopant to improve both emission intensity and thermal sensitivity. To define the conditions under which the proposed technique can be applied, gold nanorods were used to optically generate subtissue hot areas, while the resulting temperature variation was monitored with the new nanothermometers.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000431088400038 Publication Date 2018-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access (up) Not_Open_Access  
  Notes ; The authors would like to thank Dr. Guillermo Gonzalez Rubio for the kind support with the synthesis of gold nanorods. M.Q and L.M.L.-M. acknowledge financial support from the European Commission under the Marie Sklodowska-Curie program (H2020-MSCA-IF-2014_659021 – PHELLINI). Y.Z. acknowledges financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]^2 Marie Sklodowska-Curie fellowship (12U4917N). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:151576 Serial 5042  
Permanent link to this record
 

 
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 32 Pages 1802173  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000440813300022 Publication Date 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 39 Open Access (up) Not_Open_Access  
  Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:153106 Serial 5105  
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y. pdf  url
doi  openurl
  Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 31 Issue 10 Pages 1805970  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460329300004 Publication Date 2019-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 31 Open Access (up) Not_Open_Access  
  Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791  
  Call Number UA @ admin @ c:irua:158553 Serial 5245  
Permanent link to this record
 

 
Author Wang, C.; Xin, X.; Shu, M.; Huang, S.; Zhang, Y.; Li, X. pdf  doi
openurl 
  Title Scalable synthesis of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithium-ion batteries Type A1 Journal article
  Year 2019 Publication Inorganic Chemistry Frontiers Abbreviated Journal Inorg Chem Front  
  Volume 6 Issue 3 Pages 646-653  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon anode materials for Li-ion batteries have been operated close to their theoretical rate and cycle limits. Therefore, titanium-based materials have attracted great attention due to their high stability. Here, Na2Li2Ti6O14 nanofibers as anode materials were prepared through a controlled electrospinning method. The Na2Li2Ti6O14 nanofibers presented superior electrochemical performance with high rate capability and long cycle life and can be regarded as a competitive anode candidate for advanced Li-ion batteries. One-dimensional (1D) Na2Li2Ti6O14 nanofibers are able to deliver a capacity of 128.5 mA h g(-1) at 0.5C, and demonstrate superior high-rate charge-discharge capability and cycling stability (the reversible charge capacity is 77.8 mA h g(-1) with a capacity retention of 99.45% at the rate of 10C after 800 cycles). The 1D structure is considered to contribute remarkably to increased rate capability and stability. This simple and scalable method indicates that the Na2Li2Ti6O14 nanofibers have a practical application potential for high performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461092500027 Publication Date 2018-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-1553 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.036 Times cited 3 Open Access (up) Not_Open_Access  
  Notes ; The authors acknowledge financial support from the National Natural Science Foundation of China (21571110), Natural Science Foundation of Zhejiang Province (LY18B010003), and the Ningbo Key Innovation Team (2014B81005), and sponsorship by the K.C. Wong Magna Fund in Ningbo University. ; Approved Most recent IF: 4.036  
  Call Number UA @ admin @ c:irua:158566 Serial 5258  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: