toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vatanparast, M.; Egoavil, R.; Reenaas, T.W.; Verbeeck, J.; Holmestad, R.; Vullum, P.E. pdf  doi
openurl 
  Title Bandgap measurement of high refractive index materials by off-axis EELS Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 182 Issue Pages 92-98  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work Cs aberration corrected and monochromated scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) has been used to explore experimental setups that allow bandgaps of high refractive index materials to be determined. Semi-convergence and collection angles in the mu rad range were combined with off-axis or dark field EELS to avoid relativistic losses and guided light modes in the low loss range to contribute to the acquired EEL spectra. Off-axis EELS further supressed the zero loss peak and the tail of the zero loss peak. The bandgap of several GaAs-based materials were successfully determined by simple regression analyses of the background subtracted EEL spectra. The presented set-up does not require that the acceleration voltage is set to below the. Cerenkov limit and can be applied over the entire acceleration voltage range of modern TEMs and for a wide range of specimen thicknesses. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000413436500013 Publication Date 2017-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Professor Shu Min Wang and Mahdad Sadeghi at the Nanofabrication Laboratory at Chalmers University, Sweden for providing the samples. The Norwegian Research Council is acknowledged for funding the HighQ-IB project under contract no. 10415201. M.V. and T.W.R. acknowledge funding from the EEA Financial Mechanism 2009-2014 under the project contract no 23SEE/30.06.2014. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2(Integrated Infrastructure Initiative-I3) through the system of transnational access. R.E. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.843  
  Call Number (up) UA @ lucian @ c:irua:146639UA @ admin @ c:irua:146639 Serial 4778  
Permanent link to this record
 

 
Author Dendooven, J.; Ramachandran, R.K.; Solano, E.; Kurttepeli, M.; Geerts, L.; Heremans, G.; Ronge, J.; Minjauw, M.M.; Dobbelaere, T.; Devloo-Casier, K.; Martens, J.A.; Vantomme, A.; Bals, S.; Portale, G.; Coati, A.; Detavernier, C. url  doi
openurl 
  Title Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 1074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl) platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413353500023 Publication Date 2017-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 88 Open Access OpenAccess  
  Notes ; This research was funded by the Research Foundation-Flanders (FWO), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the Flemish Government (Medium-scale research infrastructure funding-Hercules funding). J. D., T. D. and M. M. M. acknowledge the FWO for a research fellowship. S. B. acknowledges the European Research Council, ERC grant no. 335078-Colouratom. For the GISAXS and XRF measurements at SOLEIL, the authors received funding from the European Community's Trans National Access Program CALIPSO. We are also grateful to the SOLEIL and ESRF staff for smoothly running the facilities. The authors thank G. Verellen for his help with drawing the 3D sketches. ; ecas_Sara Approved Most recent IF: 12.124  
  Call Number (up) UA @ lucian @ c:irua:146668UA @ admin @ c:irua:146668 Serial 4786  
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Mahr, C.; Zillmann, D.; Müller-Caspary, K.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Optimization of NBED simulations for disc-detection measurements Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue Pages 50-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-beam electron diffraction (NBED) is a method which can be applied to measure lattice strain and polarisation fields in strained layer heterostructures and transistors. To investigate precision, accuracy and spatial resolution of such measurements in dependence of properties of the specimen as well as electron optical parameters, simulations of NBED patterns are required which allow to predict the result of common disc-detection algorithms. In this paper we demonstrate by focusing on the detection of the central disc in crystalline silicon that such simulations require to take several experimental characteristics into account in order to obtain results which are comparable to those from experimental NBED patterns. These experimental characteristics are the background intensity, the presence of Poisson noise caused by electron statistics and blurring caused by inelastic scattering and by the transfer quality of the microscope camera. By means of these optimized simulations, different effects of specimen properties on disc detection – such as strain, surface morphology and compositional changes on the nanometer scale – are investigated and discussed in the context of misinterpretation in experimental NBED evaluations. It is shown that changes in surface morphology and chemical composition lead to measured shifts of the central disc in the NBED pattern of tens to hundreds of grad. These shifts are of the same order of magnitude or even larger than shifts that could be caused by an electric polarisation field in the range of MV/cm. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000411170800006 Publication Date 2017-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. R02057/11-1, R02057/4-2 and MU3660/1-1. ; Approved Most recent IF: 2.843  
  Call Number (up) UA @ lucian @ c:irua:146725 Serial 4792  
Permanent link to this record
 

 
Author Ren, X.-N.; Hu, Z.-Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 35 Pages 29687-29698  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Phase-junctions. between a cocatalyst and its semiconductor host are quite effective to enhance the photo catalytic activity and are widely studied, while reports on the phase-juncted cocatalyst are still rare. In this work, we report the deposition of the Pt/PtO phase-juncted nanodots as cocatalyst via NaOH modification of an interconnected meso-macroporous TiO2 network with high surface area and inner-particle mesopores to enhance the performance of photocatalytic H-2 production. Our results show that NaOH modification can largely influence Pt/PtO phase-juncted nanodot formation and dispersity. Compared to the TiO2 nano particles, the hierarchically meso-macroporous TiO2 network containing 0.18 wt % Pt/PtO phase-juneted cocatalyst demonstrates a highest photocatalytic H-2 rate of 13 mmol g(-1) h(-1) under simulated solar light, and possesses a stable cycling activity without obvious decrease after five cycles. Such high H-2 production performance can be attributed to both the phase-juncted Pt/PtO providing more active sites while PtO suppresses the undesirable hydrogen back reaction, and the special hierarchically porous TiO2 network with inner-particle mesopores presenting short diffusion path lengths for photogenerated electrons and enhanced light harvesting efficiency. This work suggests that Pt/PtO phase-juncted cocatalyst on hierarchically porous TiO2 nanostructures is a promising strategy for advanced photocatalytic H-2 production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410597500032 Publication Date 2017-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 18 Open Access OpenAccess  
  Notes ; B.L.S. acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y.L. acknowledges the Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), International Science & Technology Cooperation Program of China (2015DFE52870), National Natural Science Foundation of China (51502225), and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Z.Y.H. and G.V.T. acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 7.504  
  Call Number (up) UA @ lucian @ c:irua:146765 Serial 4779  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number (up) UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T.A.L.; Lippertz, G.; Trekels, M.; Menendez, E.; Kremer, F.; Wahl, U.; Costa, A.R.G.; Correia, J.G.; Banerjee, D.; Gunnlaugsson, H.P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M.J.; Hadermann, J.; Araujo, J.P.; Temst, K.; Vantomme, A.; Pereira, L.M.C. url  doi
openurl 
  Title Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in gamma-Fe nanoparticles Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 17 Pages 174410  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('gamma-Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of gamma-Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mossbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a = 3.76(2) angstrom and c = 3.50(2) angstrom, and a magnetic moment of 2.45(5) mu(B) per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured gamma-Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of gamma-Fe taking tetragonal distortion into account.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000414525200005 Publication Date 2017-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes ; The authors thank the Fund for Scientific Research-Flanders, the Concerted Research Action of the KU Leuven (GOA/14/007), the KU Leuven BOF (STRT/14/002), the Hercules Foundation, the Portuguese Foundation for Science and Technology (CERN/FIS-NUC/0004/2015), and the European Union Seventh Framework through ENSAR2 (European Nuclear Science and Applications Research, Project No. 654002), and SPIRIT (Support of Public and Industrial Research Using Ion Beam Technology, Contract No. 227012). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing beam time (experiments 26-01-1018, 26-01-1057, 20-02-728, HC-1850, HC-2208), as well as C. Baehtz, N. Boudet, and N. Blancand for support during the experiments. We acknowledge the ISOLDE-CERN facility for providing beam time (experiment IS580) and technical assistance. The authors (L.M.C.P., F.K.) acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Advanced Microscopy, Australian National University. We also acknowledge the contribution of Prof. Mark Ridgway (Australian National University), who passed away before the work was completed. ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:147387 Serial 4873  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title Highly selective gas separation membrane using in situ amorphised metal-organic frameworks Type A1 Journal article
  Year 2017 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 10 Issue 10 Pages 2342-2351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional carbon dioxide (CO2) separation in the petrochemical industry via cryogenic distillation is energy intensive and environmentally unfriendly. Alternatively, polymer membrane-based separations are of significant interest owing to low production cost, low-energy consumption and ease of upscaling. However, the implementation of commercial polymeric membranes is limited by their permeability and selectivity trade-off and the insufficient thermal and chemical stability. Herein, a novel type of amorphous mixed matrix membrane (MMM) able to separate CO2/CH4 mixtures with the highest selectivities ever reported for MOF based MMMs is presented. The MMM consists of an amorphised metal-organic framework (MOF) dispersed in an oxidatively cross-linked matrix achieved by fine tuning of the thermal treatment temperature in air up to 350 degrees C which drastically boosts the separation properties of the MMM. Thanks to the protection of the surrounding polymer, full oxidation of this MOF (i.e. ZIF-8) is prevented, and amorphisation of the MOF is realized instead, thus in situ creating a molecular sieve network. In addition, the treatment also improves the filler-polymer adhesion and induces an oxidative cross-linking of the polyimide matrix, resulting in MMMs with increased stability or plasticization resistance at high pressure up to 40 bar, marking a new milestone as new molecular sieve MOF MMMs for challenging natural gas purification applications. A new field for the use of amorphised MOFs and a variety of separation opportunities for such MMMs are thus opened.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414774500007 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 122 Open Access OpenAccess  
  Notes ; A.K. acknowledges financial support from the Erasmus-Mundus Doctorate in Membrane Engineering (EUDIME) Programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N). M. P. acknowledges financial support by the FP7 European project SUNFLOWER (FP7 #287594). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J. A. M. gratefully acknowledges financial supports from the Flemish Government for long-term Methusalem funding. J. A. M. and I. F. J. V. acknowledge the Belgian Government for IAP-PAI networking. A. K. would also like to thank Frank Mathijs for the mechanical tests, Roy Bernstein for the XPS analysis and Lien Telen and Bart Goderis for the DSC measurements. We thank Verder Scientific Benelux for providing the service of ZIF-8 ball milling. ; ecas_sara Approved Most recent IF: 29.518  
  Call Number (up) UA @ lucian @ c:irua:147399UA @ admin @ c:irua:147399 Serial 4879  
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 20 Pages 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number (up) UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title From precursor powders to CsPbX3 perovskite nanowires : one-pot synthesis, growth mechanism, and oriented self-assembly Type A1 Journal article
  Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 56 Issue 56 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single-step ligand-mediated synthesis of single-crystalline CsPbBr3 perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr3 nanocubes are transformed into NWs through an oriented-attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single-particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self-assemble in a quasi-oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000413314800065 Publication Date 2017-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 223 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go hybrid (SolTech)”, the China Scholarship Council (Y.T. and K.W.), the Alexander von Humboldt Stiftung (L.P.), and the Flemish Fund for Scientific Research (FWO Vlaanderen; E.B.). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant 335078-COLOURATOMS). ; ecas_sara Approved Most recent IF: 11.994  
  Call Number (up) UA @ lucian @ c:irua:147434UA @ admin @ c:irua:147434 Serial 4876  
Permanent link to this record
 

 
Author Alania, M.; Lobato Hoyos, I.P.; Van Aert, S. pdf  url
doi  openurl
  Title Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy : a comparison study in terms of integrated intensity and atomic column position measurement Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue A Pages 188-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramer-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415650200022 Publication Date 2017-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, and G.0368.15N). A. Rosenauer is acknowledged for providing the STEMsim program. ; Approved Most recent IF: 2.843  
  Call Number (up) UA @ lucian @ c:irua:147658 Serial 4877  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Ogorodnikov, I.I.; Kuznetsov, M.V.; Volykhov, A.A.; Matsui, F.; Callaert, C.; Hadermann, J.; Verbitskiy, N.I.; Koch, R.J.; Varykhalov, A.; Rader, O.; Yashina, L.V. pdf  url
doi  openurl
  Title Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 45 Pages 30520-30532  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of similar to 25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000416054400023 Publication Date 2017-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 4 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support within the bilateral program “Russian-German Laboratory at BESSY II” and thank Helmholtz Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and U49-PGM1. The Supercomputing Center of Lomonosov Moscow State University is gratefully acknowledged for granting access to the “Lomonosov” supercomputer. The work was partially supported by DFG priority program SPP 1666, Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft (Grant No. HRJRG-408) and Russian Foundation for Basic Research (Grants No. 13-02-91327 and No. 16-29-06410). C. C. acknowledges support from the University of Antwerp through the BOF grant 31445. The authors thank Dr Vera Neudachina, Daria Tsukanova, Dr Elmar Kataev and Dr Maria Batuk for their support during the XPS and TEM experiments. ; Approved Most recent IF: 4.123  
  Call Number (up) UA @ lucian @ c:irua:147659 Serial 4888  
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P. url  doi
openurl 
  Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 29 Pages 9340-9350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000415911600047 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess  
  Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466  
  Call Number (up) UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880  
Permanent link to this record
 

 
Author Loreto, S.; Vanrompay, H.; Mertens, M.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers Type A1 Journal article
  Year 2018 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2018 Issue 2018 Pages 62-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show the possibility to tune the pore size of mesoporous TiO2 templated by non-ionic block copolymers by adding different inorganic acids at well-chosen concentration. The effect of the inorganic anions on both the TiO2 cluster formation and the non-ionic block copolymers micelles is investigated to explain the experimental results.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000419706000008 Publication Date 2017-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 6 Open Access OpenAccess  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). Hans Vanrompay gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617N). Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.444  
  Call Number (up) UA @ lucian @ c:irua:147897UA @ admin @ c:irua:147897 Serial 4881  
Permanent link to this record
 

 
Author van den Bos, K.H.W. url  openurl
  Title Quantitative atomic resolution transmission electron microscopy for heterogeneous nanomaterials Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:147953 Serial 4892  
Permanent link to this record
 

 
Author Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G. pdf  doi
openurl 
  Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
  Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 5 Issue 2 Pages 1700921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423173800005 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access  
  Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279  
  Call Number (up) UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872  
Permanent link to this record
 

 
Author Grieb, T.; Tewes, M.; Schowalter, M.; Müller-Caspary, K.; Krause, F.F.; Mehrtens, T.; Hartmann, J.-M.; Rosenauer, A. pdf  doi
openurl 
  Title Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue B Pages 29-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The chemical composition of four Si1-xGex layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si1-xGex in STEM. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000417779800004 Publication Date 2017-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. RO2057/11-1. ; Approved Most recent IF: 2.843  
  Call Number (up) UA @ lucian @ c:irua:148500 Serial 4893  
Permanent link to this record
 

 
Author Zhong, Z.; Aveyard, R.; Rieger, B.; Bals, S.; Palenstijn, W.J.; Batenburg, K.J. pdf  url
doi  openurl
  Title Automatic correction of nonlinear damping effects in HAADF-STEM tomography for nanomaterials of discrete compositions Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue 184 Pages 57-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed to be a linear projection of a physical property of the specimen. However, this assumption of linearity is not completely valid due to the nonlinear damping of signal intensities. The nonlinear damping effects increase w.r.t the specimen thickness and lead to so-called \u0022cupping artifacts\u0022, due to a mismatch with the linear model used in the reconstruction algorithm. Moreover, nonlinear damping effects can strongly limit the applicability of advanced reconstruction approaches such as Total Variation Minimization and discrete tomography. In this paper, we propose an algorithm for automatically correcting the nonlinear effects and the subsequent cupping artifacts. It is applicable to samples in which chemical compositions can be segmented based on image gray levels. The correction is realized by iteratively estimating the nonlinear relationship between projection intensity and sample thickness, based on which the projections are linearized. The correction and reconstruction algorithms are tested on simulated and experimental data. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000417779800008 Publication Date 2017-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access OpenAccess  
  Notes ; This research is supported by the Dutch Technology Foundation STW (http:// www.stw.nl/), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs, Agriculture and Innovation under project number 13314. Funding from the European Research Council (Starting grant no. COLOURATOMS 335078) is acknowledged by S. Bals. The authors would like to thank Dr. Thomas Altantzis and Dr. Bart Goris for providing the experimental data, and Prof. Dr. Luis M. Liz-Marzan for providing the investigated samples. ; ecas_sara Approved Most recent IF: 2.843  
  Call Number (up) UA @ lucian @ c:irua:148501UA @ admin @ c:irua:148501 Serial 4867  
Permanent link to this record
 

 
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F. url  doi
openurl 
  Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 23 Pages 235309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418654200009 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:148505 Serial 4882  
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D. url  doi
openurl 
  Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
  Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 119 Issue 25 Pages 256403  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000418619100014 Publication Date 2017-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 79 Open Access OpenAccess  
  Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462  
  Call Number (up) UA @ lucian @ c:irua:148510 Serial 4897  
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9923-9936  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600010 Publication Date 2017-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access  
  Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466  
  Call Number (up) UA @ lucian @ c:irua:148530 Serial 4899  
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V. pdf  url
doi  openurl
  Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9954-9963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600013 Publication Date 2017-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access OpenAccess  
  Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466  
  Call Number (up) UA @ lucian @ c:irua:148531 Serial 4869  
Permanent link to this record
 

 
Author Kumar, A.; Kundu, S.; Samantaray, D.; Kundu, P.; Zanaga, D.; Bals, S.; Ravishankar, N. url  doi
openurl 
  Title Designing diameter-modulated heterostructure nanowires of PbTe/Te by controlled dewetting Type A1 Journal article
  Year 2017 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 17 Issue 17 Pages 7226-7233  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000418393300009 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 11 Open Access OpenAccess  
  Notes ; N.R acknowledges financial support from SERB, DST, Government of India. The authors acknowledge the electron microscopy facilities at the Advanced Facility for Microscopy and Microanalysis, IISc. S.B., P.K., and D.Z. acknowledge ERC Starting Grant 335078 COLOURATOMS for financial support. ; ecas_Sara Approved Most recent IF: 12.712  
  Call Number (up) UA @ lucian @ c:irua:148557UA @ admin @ c:irua:148557 Serial 4870  
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A. pdf  doi
openurl 
  Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater  
  Volume 8 Issue 4 Pages 1701581  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor  
  Language Wos 000424152200009 Publication Date 2017-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access  
  Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721  
  Call Number (up) UA @ lucian @ c:irua:149269 Serial 4951  
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V. pdf  doi
openurl 
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400001 Publication Date 2017-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access  
  Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299  
  Call Number (up) UA @ lucian @ c:irua:149283 Serial 4936  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J. pdf  doi
openurl 
  Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 825-834  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400107 Publication Date 2017-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access  
  Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299  
  Call Number (up) UA @ lucian @ c:irua:149284 Serial 4928  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Schroeder, R.R.; Alkarsifi, R.; Gaceur, M.; Koentges, W.; Heidari, H.; Bals, S.; Margeat, O.; Ackermann, J.; Videlot-Ackermann, C. url  doi
openurl 
  Title Interplay of interfacial layers and blend composition to reduce thermal degradation of polymer solar cells at high temperature Type A1 Journal article
  Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 10 Issue 10 Pages 3874-3884  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b'-dithiopherie-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b]thiophenediyl]] : [6,6]-phenyl- C-71-butyric acid methyl ester (PTB7:PC70BM) blend as photoactive layer in combination with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as hole extraction layer is used here to focus on the impact of electron extraction layer (EEL) on the thermal stability of solar cells. Solar cells processed with densely packed ZnO nanoparticle layers still show 92% of the initial efficiency after constant annealing during 1 day at 140 degrees C, whereas partially covering ZnO layers as well as an evaporated calcium layer leads to performance losses of up to 30%. This demonstrates that the nature and morphology of EELs highly influence the thermal stability of the device. We extend our study to thermally unstable PTB7:[6,6]-phenyl-C-61-butyric acid methyl ester (PC60BM) blends to highlight the impact of ZnO on the device degradation during annealing. Importantly, only 12% loss in photocurrent density is observed after annealing at 140 degrees C during 1 day when using closely packed ZnO. This is in stark contrast to literature and addressed here to the use of a stable double-sided confinement during thermal annealing. The underlying mechanism of the inhibition of photocurrent losses is revealed by electron microscopy imaging and spatially resolved spectroscopy. We found that the double-sided confinement suppresses extensive fullerene diffusion during the annealing step, but with still an increase in size and distance of the enriched donor and acceptor domains inside the photoactive layer by an average factor of 5. The later result in combination with comparably small photocurrent density losses indicates the existence of an efficient transport of minority charge carriers inside the donor and acceptor enriched phases in PTB7:PC60BM blends.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424728800082 Publication Date 2018-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 9 Open Access OpenAccess  
  Notes ; We acknowledge the financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract number: 287594). M.P. and R.R.S. acknowledge support by the HeiKA (Heidelberg Karlsruhe Research Partnership) FunTech-3D materials science program. ; Approved Most recent IF: 7.504  
  Call Number (up) UA @ lucian @ c:irua:149309UA @ admin @ c:irua:149309 Serial 4939  
Permanent link to this record
 

 
Author Şentosun, K. url  openurl
  Title 2D and 3D characterization of plasmonic and porous nanoparticles using transmission electron microscopy Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerp Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:149802 Serial 4926  
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year 2018 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 262 Issue 262 Pages 74-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.364  
  Call Number (up) UA @ lucian @ c:irua:149854 Serial 4938  
Permanent link to this record
 

 
Author Pramanik, G.; Humpolickova, J.; Valenta, J.; Kundu, P.; Bals, S.; Bour, P.; Dracinsky, M.; Cigler, P. url  doi
openurl 
  Title Gold nanoclusters with bright near-infrared photoluminescence Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 3792-3798  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (similar to 25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000426148500026 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 97 Open Access OpenAccess  
  Notes ; The authors acknowledge support from the GACR project Nr. 18-12533S. J. V. acknowledges funding from the Ministry of Education, Youth and Sports of the Czech Republic via the V4+Japan project No. 8F15001 (cofinanced by the International Visegrad Fund). P. B. acknowledges GACR project No. 16-05935S and Ministry of Education, Youth and Sports of the Czech Republic project No. LTC17012. ; Approved Most recent IF: 7.367  
  Call Number (up) UA @ lucian @ c:irua:149901UA @ admin @ c:irua:149901 Serial 4935  
Permanent link to this record
 

 
Author Wu, J.; Zhang, L.; Xin, X.; Zhang, Y.; Wang, H.; Sun, A.; Cheng, Y.; Chen, X.; Xu, G. url  doi
openurl 
  Title Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate Type A1 Journal article
  Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 10 Issue 7 Pages 6785-6792  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426143900081 Publication Date 2018-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 7 Open Access OpenAccess  
  Notes ; The work was supported by the National Natural Science Foundation of China (Grant 21573267, 11674335), the Youth Innovation Promotion Association CAS (2013196), and the Program for Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005). ; Approved Most recent IF: 7.504  
  Call Number (up) UA @ lucian @ c:irua:149911 Serial 4931  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: