|
Record |
Links |
|
Author |
Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T.A.L.; Lippertz, G.; Trekels, M.; Menendez, E.; Kremer, F.; Wahl, U.; Costa, A.R.G.; Correia, J.G.; Banerjee, D.; Gunnlaugsson, H.P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M.J.; Hadermann, J.; Araujo, J.P.; Temst, K.; Vantomme, A.; Pereira, L.M.C. |
|
|
Title |
Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in gamma-Fe nanoparticles |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
96 |
Issue |
17 |
Pages |
174410 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
<script type='text/javascript'>document.write(unpmarked('gamma-Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of gamma-Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mossbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a = 3.76(2) angstrom and c = 3.50(2) angstrom, and a magnetic moment of 2.45(5) mu(B) per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured gamma-Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of gamma-Fe taking tetragonal distortion into account.')); |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
New York, N.Y |
Editor |
|
|
|
Language |
|
Wos |
000414525200005 |
Publication Date |
2017-11-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
1 |
Open Access |
OpenAccess |
|
|
Notes |
; The authors thank the Fund for Scientific Research-Flanders, the Concerted Research Action of the KU Leuven (GOA/14/007), the KU Leuven BOF (STRT/14/002), the Hercules Foundation, the Portuguese Foundation for Science and Technology (CERN/FIS-NUC/0004/2015), and the European Union Seventh Framework through ENSAR2 (European Nuclear Science and Applications Research, Project No. 654002), and SPIRIT (Support of Public and Industrial Research Using Ion Beam Technology, Contract No. 227012). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing beam time (experiments 26-01-1018, 26-01-1057, 20-02-728, HC-1850, HC-2208), as well as C. Baehtz, N. Boudet, and N. Blancand for support during the experiments. We acknowledge the ISOLDE-CERN facility for providing beam time (experiment IS580) and technical assistance. The authors (L.M.C.P., F.K.) acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Advanced Microscopy, Australian National University. We also acknowledge the contribution of Prof. Mark Ridgway (Australian National University), who passed away before the work was completed. ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ lucian @ c:irua:147387 |
Serial |
4873 |
|
Permanent link to this record |