toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Vanmeert, F.; de Nolf, W.; De Meyer, S.; Dik, J.; Janssens, K. url  doi
openurl 
  Title Macroscopic X-ray powder diffraction scanning, a new method for highly selective chemical imaging of works of art : instrument optimization Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 11 Pages 6436-6444  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the past decade macroscopic X-ray fluorescence imaging (MA-XRF) has become established as a method for the noninvasive investigation of flat painted surfaces, yielding large scale elemental maps. MA-XRF is limited by a lack of specificity, only allowing for indirect pigment identification based on the simultaneous presence of chemical elements. The high specificity of X-ray powder diffraction (XRPD) mapping is already being exploited at synchrotron facilities for investigations at the (sub)microscopic scale, but the technique has not yet been employed using lab sources. In this paper we present the development of a novel MA-XRPD/XRF instrument based on a laboratory X-ray source. Several combinations of X-ray sources and area detectors are evaluated in terms of their spatial and angular resolution and their sensitivity. The highly specific imaging capability of the combined MA-XRPD/XRF instrument is demonstrated on a 15th/16th century illuminated manuscript directly revealing the distribution of a large number of inorganic pigments, including the uncommon yellow pigment massicot (o-PbO). The case study illustrates the wealth of new mapping information that can be obtained in a noninvasive manner using the laboratory MA-XRPD/XRF instrument.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434893200019 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 11 Open Access  
  Notes ; The authors thank the persons involved at Incoatec GmbH, imXPAD SAS and Dectris Ltd. for loaning us some of their products over the past years. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” Project and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:151993 Serial 5701  
Permanent link to this record
 

 
Author (up) Vanmeert, F.; de Nolf, W.; Dik, J.; Janssens, K. url  doi
openurl 
  Title Macroscopic X-ray powder diffraction scanning : possibilities for quantitative and depth-selective parchment analysis Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 11 Pages 6445-6452  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract At or below the surface of painted works of art, valuable information is present that provides insights into an objects past, such as the artists technique and the creative process that was followed or its conservation history but also on its current state of preservation. Various noninvasive techniques have been developed over the past 2 decades that can probe this information either locally (via point analysis) or on a macroscopic scale (e.g., full-field imaging and raster scanning). Recently macroscopic X-ray powder diffraction (MA-XRPD) mapping using laboratory X-ray sources was developed. This method can visualize highly specific chemical distributions at the macroscale (dm(2)). In this work we demonstrate the synergy between the quantitative aspects of powder diffraction and the noninvasive scanning capability of MA-XRPD highlighting the potential of the method to reveal new types of information. Quantitative data derived from a 15th/16th century illuminated sheet of parchment revealed three lead white pigments with different hydrocerussite-cerussite compositions in specific pictorial elements, while quantification analysis of impurities in the blue azurite pigment revealed two distinct azurite types: one rich in barite and one in quartz. Furthermore, on the same artifact, the depth-selective possibilities of the method that stem from an exploitation of the shift of the measured diffraction peaks with respect to reference data are highlighted. The influence of different experimental parameters on the depth-selective analysis results is briefly discussed. Promising stratigraphic information could be obtained, even though the analysis is hampered by not completely understood variations in the unit cell dimensions of the crystalline pigment phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434893200020 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 6 Open Access  
  Notes ; The authors thank Incoatec GmbH for giving us the opportunity to test the I mu S Cu X-ray source. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:151994 Serial 5702  
Permanent link to this record
 

 
Author (up) Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K. doi  openurl
  Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 25 Pages 7418-7422  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200023 Publication Date 2018-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access  
  Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153185 Serial 5517  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma physics of liquids—A focused review Type A1 Journal article
  Year 2018 Publication Applied physics reviews Abbreviated Journal Appl Phys Rev  
  Volume 5 Issue 3 Pages 031103  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of plasma with liquids has led to various established industrial implementations as well as promising applications, including high-voltage switching, chemical analysis, nanomaterial synthesis, and plasma medicine. Along with these numerous accomplishments, the physics of plasma in liquid or in contact with a liquid surface has emerged as a bipartite research field, for which we introduce here the term “plasma physics of liquids.” Despite the intensive research

investments during the recent decennia, this field is plagued by some controversies and gaps in knowledge, which might restrict further progress. The main difficulties in understanding revolve around the basic mechanisms of plasma initiation in the liquid phase and the electrical interactions at a plasma-liquid interface, which require an interdisciplinary approach. This review aims to provide the wide applied physics community with a general overview of the field, as well as the opportunities for interdisciplinary research on topics, such as nanobubbles and the floating water bridge, and involving the research domains of amorphous semiconductors, solid state physics, thermodynamics, material science, analytical chemistry, electrochemistry, and molecular dynamics simulations. In addition, we provoke awareness of experts in the field on yet underappreciated question marks. Accordingly, a strategy for future experimental and simulation work is proposed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446117000003 Publication Date 2018-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.667 Times cited 33 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. The authors express their gratitude to Professor Dr. Peter Bruggeman (University of Minnesota, USA) for very useful comments on a draft of Sec. III C. P. Vanraes is very grateful to Professor Dr. Lars Pettersson (Stockholm University, Sweden) for the interesting discussions on the microscopic structure of water, to Dr. Xiaolong Deng (National University of Defense Technology, China) for his help with the figures, to Dr. Anton Nikiforov (Ghent University, Belgium) for the help with retrieving the relevant chapter of Ref. 319, and to Dr. Tatiana Nikitenko (Vitebst State Masherov University, Belarus), Katja Nygard (Netherlands), Iryna Kuchakova (Ghent University, Belgium), and Mindaugas Kersys (Lithuania) for their tremendous help with the translation of the corresponding chapter. Approved Most recent IF: 13.667  
  Call Number PLASMANT @ plasmant @c:irua:152823 Serial 5001  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Nikiforov, A.; Bogaerts, A.; Leys, C. url  doi
openurl 
  Title Study of an AC dielectric barrier single micro-discharge filament over a water film Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 10919  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the last decades, AC powered atmospheric dielectric barrier discharges (DBDs) in air with a liquid electrode have been proposed as a promising plasma technology with versatile applicability in medicine agriculture and water treatment. The fundamental features of the micro-discharge filaments that make up this type of plasma have, however, not been studied yet in sufficient detail. In order to address this need, we investigated a single DBD micro-discharge filament over a water film in a sphere-to-sphere electrode configuration, by means of ICCD imaging and optical emission spectroscopy. When the water film temporarily acts as the cathode, the plasma duration is remarkably long and shows a clear similarity with a resistive barrier discharge, which we attribute to the resistive nature of the water film and the formation of a cathode fall. As another striking difference to DBD with solid electrodes, a constant glow-like plasma is observed at the water surface during the entire duration of the applied voltage cycle, indicating continuous plasma treatment of the liquid. We propose several elementary mechanisms that might underlie the observed unique behavior, based on the specific features of a water electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439101600018 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 3 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152822c:irua:152411 Serial 4999  
Permanent link to this record
 

 
Author (up) Vanraes, P.; Wardenier, N.; Surmont, P.; Lynen, F.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.; Bogaerts, A. pdf  url
doi  openurl
  Title Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products Type A1 Journal article
  Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 354 Issue Pages 180-190  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437814600021 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 4 Open Access Not_Open_Access: Available from 04.05.2020  
  Notes This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors would like to thank Carbon Cloth Division for Zorflex® samples and personally thank Jack Taylor for fruitful discussion of active carbon water treatment processes Approved Most recent IF: 6.065  
  Call Number PLASMANT @ plasmant @c:irua:152179 Serial 4989  
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 22792-22801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453248100010 Publication Date 2018-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 55 Open Access OpenAccess  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 Serial 5071  
Permanent link to this record
 

 
Author (up) Vanschoenwinkel, J.; Van Passel, S. url  doi
openurl 
  Title Climate response of rainfed versus irrigated farms: the bias of farm heterogeneity in irrigation Type A1 Journal article
  Year 2018 Publication Climatic Change Abbreviated Journal Climatic Change  
  Volume 147 Issue 1-2 Pages 225-234  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Researchers who do not take into account farm heterogeneity in implementing specific climate change adaptation options might significantly bias their findings. To prove this point, this paper focusses on irrigation as an adaptation option to climate change and highlights the fact that there is no such thing as “irrigation.” Instead, different farms consider water management options across a spectrum that ranges from purely rainfed farms to purely irrigated farms with in between the extreme practices such as supplemental irrigation, water conservation practices, and different irrigation techniques. Accounting for such differences is necessary, yet difficult due to a lack of farm-specific data on water management and irrigation. This paper uses unique Farm Accountancy Data Network data of Western European farmers on the proportion of farmland that each farm irrigates. Unlike previous work, this allows taking into account some within-irrigation heterogeneity instead of simply categorizing farms as being “irrigated.” We estimate and compare climate response models based on the Ricardian cross-sectional method for a large range of irrigation categories. The results give insights into how the farm irrigation climate response can be significantly different depending on how irrigation is defined. This proves that ignoring within-adaptation differences when comparing non-adaptation with adaptation (in this case, rainfed versus irrigated agriculture) might lead to biased conclusions with regard to effectiveness of adaptation strategies. We therefore argue that it might be more relevant to understand at which point and under which circumstances irrigated agriculture is more or less beneficial than rainfed agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425959700017 Publication Date 2018-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.496 Times cited 1 Open Access  
  Notes ; This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). ; Approved Most recent IF: 3.496  
  Call Number UA @ admin @ c:irua:149895 Serial 6166  
Permanent link to this record
 

 
Author (up) Verbeeck, J.; Béché, A.; Müller-Caspary, K.; Guzzinati, G.; Luong, M.A.; Den Hertog, M. pdf  url
doi  openurl
  Title Demonstration of a 2 × 2 programmable phase plate for electrons Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 190 Issue Pages 58-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432868800007 Publication Date 2018-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 73 Open Access Not_Open_Access: Available from 19.04.2020  
  Notes J.V. and A.B. acknowledge funding from the Fund for Scientific Research Flanders FWO project G093417N and the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX and ERC proof of concept project DLV-789598 ADAPTEM. The Qu-Ant-EM microscope used in this work was partly funded by the Hercules fund from the Flemish Government. MdH acknowledges financial support from the ANRCOSMOS (ANR-12-JS10-0002). MdH and ML acknowledge funding from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:150459UA @ admin @ c:irua:150459 Serial 4920  
Permanent link to this record
 

 
Author (up) Vereecke, G.; De Coster, H.; Van Alphen, S.; Carolan, P.; Bender, H.; Willems, K.; Ragnarsson, L.-A.; Van Dorpe, P.; Horiguchi, N.; Holsteyns, F. pdf  doi
openurl 
  Title Wet etching of TiN in 1-D and 2-D confined nano-spaces of FinFET transistors Type A1 Journal article
  Year 2018 Publication Microelectronic engineering Abbreviated Journal  
  Volume 200 Issue Pages 56-61  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the manufacturing of multi-Vt FinFET transistors, the gate material deposited in the nano-spaces left by the removed dummy gate must be etched back in mask-defined wafer areas. Etch conformality is a necessary condition for the control of under-etch at the boundary between areas defined by masking. We studied the feasibility of TiN etching by APM (ammonia peroxide mixture, also known as SC1) in nano-confined volumes representative of FinFET transistors of the 7 nm node and below, namely nanotrenches with 1-D confinement and nanoholes with 2-D confinement. TiN etching was characterized for rate and conformality using different electron microscopy techniques. Etching in closed nanotrenches was conformal, starting and progressing all along the 2-D seam, with a rate that was 38% higher compared to a planar film. Etching in closed nanoholes proved also to be conformal and faster than planar films, but with a delay to open the 1-D seam that seemed to depend strongly on small variations in the hole diameter. However, holes between the fins at the bottom of the removed dummy gate, are not circular and do present 2-D seams that should lend themselves for an easier start of conformal etching as compared to the circular nanoholes used in this study. Finally, to explain the higher etch rate observed in nano-confined features, concentrations of ions in nanoholes were calculated taking the overlap of electrostatic double layers (EDL) into account. With negatively charged TiN walls, as measured by streaming potential on planar films, ammonium was the dominant ion in nanoholes. As no chemical reaction proposed in the literature for TiN etching matched with this finding, we proposed that the formation of ammine complexes, dissolving the formed Ti oxide, was the rate-determining step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449134800010 Publication Date 2018-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155414 Serial 8757  
Permanent link to this record
 

 
Author (up) Verlackt, C. pdf  openurl
  Title The behavior of plasma-generated reactive species in plasma medicine Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155115 Serial 5079  
Permanent link to this record
 

 
Author (up) Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 10 Pages 6845-6859  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000429286100009 Publication Date 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 35 Open Access OpenAccess  
  Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908  
Permanent link to this record
 

 
Author (up) Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
  Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 45 Pages 25869-25881  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451101400016 Publication Date 2018-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070  
Permanent link to this record
 

 
Author (up) Vermeulen, M.; Janssens, K.; Sanyova, J.; Rahemi, V.; McGlinchey, C.; De Wael, K. pdf  url
doi  openurl
  Title Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques Type A1 Journal article
  Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 82-91  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this paper, we used the semiconducting and lightfastness properties of synthetic and mineral arsenic sulfide pigments to study their stability by means of electrochemical and microfadometric techniques. A combination of these techniques shows that in the early stage of the degradation process, amorphous arsenic sulfides are more stable than both crystalline forms, while upon longer exposure time, amorphous pigments will fade more than both mineral pigments, making it less suitable. While the stability study was carried out on unbound pigments, the influence of the organic binder on the relative degradation of the arsenic sulfide pigments was investigated through a multi-analytical approach on pigment/binder mock-up paint samples. For this purpose, the formation of arsenic trioxide was assessed by micro Fourier transform infrared (μ-FTIR) spectroscopy while the influence of the binder on the formation of sulfates was studied by means of synchrotron radiation X-ray near edge structure (μ-XANES). Both techniques elucidate a higher stability of all pigments in gum arabic while the use of egg yolk as binder leads to the most degradation, most likely due to its sulfur-rich composition. In the context of the degradation of arsenic sulfide pigments, other binders such as animal glue, egg white or linseed oil show an intermediate impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000010 Publication Date 2018-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 4 Open Access  
  Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (grant number SD/RI/04A). We gratefully acknowledge Megane Willems (Institut Paul-Lambin) for her help with mu-FFIR analyses and realization of the mock-up paint samples. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline Phoenix of the SLS. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:150149 Serial 5482  
Permanent link to this record
 

 
Author (up) Vermeulen, M.; Saverwyns, S.; Coudray, A.; Janssens, K.; Sanyova, J. pdf  doi
openurl 
  Title Identification by Raman spectroscopy of pararealgar as a starting material in the synthesis of amorphous arsenic sulfide pigments Type A1 Journal article
  Year 2018 Publication Dyes and pigments Abbreviated Journal Dyes Pigments  
  Volume 149 Issue 149 Pages 290-297  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this study, a combination of elemental analytical techniques (MA-XRF and SEM-EDX) were used to localize arsenic sulfide pigments within a 17th-century Dutch painting and in the stratigraphy of an 18th-century Flemish polychrome sculpture. Once located, Raman spectroscopy was used to obtain the vibrational signature of the arsenic sulfide pigments employed. By means of the latter analytical technique and due to the very distinctive Raman scattering signal of the various arsenic sulfide compounds, it was possible to identify the arsenic-based pigments as natural orpiment and amorphous arsenic sulfide. In the latter case, based on the minor bands observed and the good condition of the paint layers, it was possible to identify pararealgar, the orangey-yellow to yellow degradation product of realgar, as the initial arsenic sulfide material used for the synthesis of the amorphous pigment. To the best of our knowledge, this is the first time that combined pararealgar/amorphous arsenic sulfide Raman spectra are reported in historical samples. Therefore, this would be the first identification of pararealgar as the starting material to produce amorphous, arsenic sulfide pigments used in artworks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423246900033 Publication Date 2017-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.473 Times cited 7 Open Access  
  Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development SDD: “Long-term role and fate of metal -sulfides in painted works of art S2ART” (SD/RI/04A). The authors would like to acknowledge the owner of the Abraham Mignon painting, Cecile Glaude for her help with SEM-EDX analyses as well as Livia Depuyt, Carlota Barbosa and Athanasia Fragkou for their assistance. The authors also acknowledge Dr. Karel Palka and Prof. Miroslav Week for their help with the synthesis of the amorphous arsenic sulfide references. ; Approved Most recent IF: 3.473  
  Call Number UA @ admin @ c:irua:149307 Serial 5648  
Permanent link to this record
 

 
Author (up) Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G. pdf  doi
openurl 
  Title Self-consistent procedure including envelope function normalization for full-zone Schrodinger-Poisson problems with transmitting boundary conditions Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 20 Pages 204501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the quantum mechanical simulation of exploratory semiconductor devices, continuum methods based on a k.p/envelope function model have the potential to significantly reduce the computational burden compared to prevalent atomistic methods. However, full-zone k.p/envelope function simulation approaches are scarce and existing implementations are not self-consistent with the calculation of the electrostatic potential due to the lack of a stable procedure and a proper normalization of the multi-band envelope functions. Here, we therefore present a self-consistent procedure based on a full-zone spectral k.p/envelope function band structure model. First, we develop a proper normalization for the multi-band envelope functions in the presence of transmitting boundary conditions. This enables the calculation of the free carrier densities. Next, we construct a procedure to obtain self-consistency of the carrier densities with the electrostatic potential. This procedure is stabilized with an adaptive scheme that relies on the solution of Poisson's equation in the Gummel form, combined with successive underrelaxation. Finally, we apply our procedure to homostructure In0.53Ga0.47As tunnel field-effect transistors (TFETs) and staggered heterostructure GaAs0.5Sb0.5/In0.53Ga0.47As TFETs and show the importance of self-consistency on the device predictions for scaled dimensions. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451743900015 Publication Date 2018-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 1 Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:156291 Serial 5228  
Permanent link to this record
 

 
Author (up) Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
  Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 18 Issue 3 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426033400022 Publication Date 2018-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited Open Access Not_Open_Access  
  Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483  
  Call Number EMAT @ emat @c:irua:147505 Serial 4775  
Permanent link to this record
 

 
Author (up) Vishwakarma, M.; Thota, N.; Karakulina, O.; Hadermann, J.; Mehta, B.R. url  doi
openurl 
  Title Role of graphene inter layer on the formation of the MoS2 – CZTS interface during growth Type P1 Proceeding
  Year 2018 Publication (icc-2017) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.  
  Address  
  Corporate Author Thesis  
  Publisher Amer inst physics Place of Publication Melville Editor  
  Language Wos 000436313003046 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 1953 Series Issue Edition  
  ISSN 978-0-7354-1648-2; 0094-243x; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes ; The authors acknowledge support provided by DST project. M.V. acknowledges IIT Delhi for MHRD fellowship. Prof. B. R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:153203 Serial 5126  
Permanent link to this record
 

 
Author (up) Vodolazov, D.Y.; Berdiyorov, G.; Peeters, F.M. pdf  url
doi  openurl
  Title Negative magnetoresistance in thin superconducting films with parallel orientation of current and magnetic field Type A1 Journal article
  Year 2018 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 552 Issue 552 Pages 64-66  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thin superconducting films can exhibit negative magnetoresistance when an in-plane external magnetic field is aligned parallel with the transport current. We explain this effect as due to appearance of parallel vortices in the plain of the film at the first critical magnetic field H-c1 which leads to an enhancement of the superconducting properties and impedes the motion of the current induced perpendicular vortices. Our theoretical results are based on a numerical solution of the time-dependent and stationary 3D Ginzburg-Landau equations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000440786600012 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes ; The work is supported by the Russian Science Foundation Project No. 17-72-30036 and the Malthusian programme of the Flemish government. ; Approved Most recent IF: 1.404  
  Call Number UA @ lucian @ c:irua:153067UA @ admin @ c:irua:153067 Serial 5117  
Permanent link to this record
 

 
Author (up) Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V. pdf  doi
openurl 
  Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 33 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443279300007 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:153647 Serial 5080  
Permanent link to this record
 

 
Author (up) Voskamp, I.M.; Spiller, M.; Stremke, S.; Bregt, A.K.; Vreugdenhil, C.; Rijnaarts, H.H.M. url  doi
openurl 
  Title Space-time information analysis for resource-conscious urban planning and design : a stakeholder based identification of urban metabolism data gaps Type A1 Journal article
  Year 2018 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 128 Issue Pages 516-525  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The research presented here examined at which spatial and temporal resolution urban metabolism should be analysed to generate results that are useful for implementation of urban planning and design interventions aiming at optimization of resource flows. Moreover, it was researched whether a lack of data currently hampers analysing resource flows at this desired level of detail. To facilitate a stakeholder based research approach, the SIRUP tool Space-time Information analysis for Resource-conscious Urban Planning was developed. The tool was applied in a case study of Amsterdam, focused on the investigation of energy and water flows. Results show that most urban planning and design interventions envisioned in Amsterdam require information on a higher spatiotemporal resolution than the resolution of current urban metabolism analyses, i.e., more detailed than the city level and at time steps smaller than a year. Energy-related interventions generally require information on a higher resolution than water-related interventions. Moreover, for the majority of interventions information is needed on a higher resolution than currently available. For energy, the temporal resolution of existing data proved inadequate, for water, data with both a higher spatial and temporal resolution is required. Modelling and monitoring techniques are advancing for both water and energy and these advancements are likely to contribute to closing these data gaps in the future. These advancements can also prove useful in developing new sorts of urban metabolism analyses that can provide a systemic understanding of urban resource flows and that are tailored to urban planning and design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417658500051 Publication Date 2016-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:143927 Serial 8562  
Permanent link to this record
 

 
Author (up) Wang, W.; Berthelot, A.; Zhang, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results? Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 20 Pages 204003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract One of the main issues in plasma chemistry modeling is that the cross sections and rate coefficients are subject to uncertainties, which yields uncertainties in the modeling results and hence hinders the predictive capabilities. In this paper, we reveal the impact of these uncertainties on the model predictions of plasma-based dry reforming in a dielectric barrier discharge. For this purpose, we performed a detailed uncertainty analysis and sensitivity study. 2000 different combinations of rate coefficients, based on the uncertainty from a log-normal distribution, are used to predict the uncertainties in the model output. The uncertainties in the electron density and electron temperature are around 11% and 8% at the maximum of the power deposition for a 70% confidence level. Still, this can have a major effect on the electron impact rates and hence on the calculated conversions of CO2 and CH4, as well as on the selectivities of CO and H2. For the CO2 and CH4 conversion, we obtain uncertainties of 24% and 33%, respectively. For the CO and H2 selectivity, the corresponding uncertainties are 28% and 14%, respectively. We also identify which reactions contribute most to the uncertainty in the model predictions. In order to improve the accuracy and reliability of plasma chemistry models, we recommend using only verified rate coefficients, and we point out the need for dedicated verification experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430960600003 Publication Date 2018-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (Grant No. G.0383.16N) and the TOP-BOF project of the University of Antwerp. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:151292 Serial 4958  
Permanent link to this record
 

 
Author (up) Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 334 Issue Pages 2467-2479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418533400246 Publication Date 2017-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800  
Permanent link to this record
 

 
Author (up) Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 16 Pages 8704-8723  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431151200002 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 28 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922  
Permanent link to this record
 

 
Author (up) Wang, W.; Van Duppen, B.; Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Magnetopolaron effect on shallow-impurity states in the presence of magnetic and intense terahertz laser fields in the Faraday configuration Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 6 Pages 064108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetopolaron effect on shallow-impurity states in semiconductors is investigated when subjected simultaneously to a magnetic field and an intense terahertz laser field within the Faraday configuration. We use a time-dependent nonperturbative theory to describe electron interactions. The externally applied fields are exactly included via a laser-dressed interaction potential. Through a variational approach we evaluate the binding energy of the shallow-impurity states. We find that the interaction strength of the laser-dressed Coulomb potential can not only be enhanced but also weakened by varying the two external fields. In this way, the binding energy can be tuned by the external fields and red-or blue-shifted with respect to the static binding energy. In the nonresonant polaron region, a magnetopolaron correction that includes the effects of photon process is observed. In the resonant polaron region, moreover, the resonant magnetopolaron effect accompanied by the emission and absorption of a single photon is distinctly observed. This can be modulated to be far away from the reststrahlen band. The intriguing findings of this paper can be observed experimentally and, in turn, provide a way to measure the strength of the electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000426041900004 Publication Date 2018-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 11404214 and No. 11455015) and the China Scholarship Council (CSC), Anhui Provincial Natural Science Foundation (Grant No. 1408085QA13), Key Projects of Anhui Provincial Department of Education (Grants No. KJ2017A406 and No. KJ2017A401). B.V.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a postdoctoral fellowship and M.V.d.D. was financially supported by the Research Science Foundation-Flanders (FWO-Vl) through a doctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149906UA @ admin @ c:irua:149906 Serial 4942  
Permanent link to this record
 

 
Author (up) Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.-L.; Liu, C.-jun doi  openurl
  Title Catalyst preparation with plasmas : how does it work? Type A1 Journal article
  Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 8 Issue 3 Pages 2093-2110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalyst preparation with plasmas is increasingly attracting interest. A plasma is a partially ionized gas, consisting of electrons, ions, molecules, radicals, photons, and excited species, which are all active species for catalyst preparation and treatment. Under the influence of plasma, nucleation and crystal growth in catalyst preparation can be very different from those in the conventional thermal approach. Some thermodynamically unfavorable reactions can easily take place with plasmas. Compounds such as sulfides, nitrides, and phosphides that are produced under harsh conditions can be synthesized by plasma under mild conditions. Plasmas can produce catalysts with smaller particle sizes and controllable structure. Plasma is also a facile tool for reduction, oxidation, doping, etching, coating, alloy formation, surface treatment, and surface cleaning in a simple and direct way. A rapid and convenient plasma template removal has thus been established for zeolite synthesis. It can operate at room temperature and allows the catalyst preparation on temperature-sensitive supporting materials. Plasma is typically effective for the production of various catalysts on metallic substrates. In addition, plasma-prepared transition-metal catalysts show enhanced low-temperature activity with improved stability. This provides a useful model catalyst for further improvement of industrial catalysts. In this review, we aim to summarize the recent advances in catalyst preparation with plasmas. The present understanding of plasma-based catalyst preparation is discussed. The challenges and future development are addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Amer chemical soc Place of Publication Washington Editor  
  Language Wos 000426804100055 Publication Date 2018-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 81 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:150880 Serial 4963  
Permanent link to this record
 

 
Author (up) Wei, H.; Hu, Z.-Y.; Xiao, Y.-X.; Tian, G.; Ying, J.; Van Tendeloo, G.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction Type A1 Journal article
  Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J  
  Volume 13 Issue 9 Pages 1119-1123  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly dispersed PtPd bimetallic nanocrystals with enhanced catalytic activity and stability were prepared by adjusting the interfacial wettability of the reaction solution on a commercial carbon support. This approach holds great promise for the development of high-performance and low-cost catalysts for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000431625200006 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.083 Times cited 3 Open Access Not_Open_Access  
  Notes ; This work supported by National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2016007), CNPC Research Institute of Safety and Environmental Technology, SKLPPC. ; Approved Most recent IF: 4.083  
  Call Number UA @ lucian @ c:irua:151525 Serial 5018  
Permanent link to this record
 

 
Author (up) Weng, Y.; Jia, Z.; Ding, L.; Muraishi, S.; Liu, Q. pdf  url
doi  openurl
  Title Clustering behavior during natural aging and artificial aging in Al-Mg-Si alloys with different Ag and Cu addition Type A1 Journal article
  Year 2018 Publication Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 732 Issue 732 Pages 273-283  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of Ag and Cu addition on clustering behavior of Al-Mg-Si alloys during natural aging (NA) and artificial aging (AA) was investigated by hardness measurement, tensile test and atom probe tomography analysis. The results show that both Ag and Cu atoms could enter clusters and GP-zones, change the Mg/Si ratio and increase their volume fractions. Compared with the Al base alloy, the clusters in the Ag/Cu-added alloys more easily transform to beta" phases for size and compositional similarity, and the strengthening ability of these particles is enhanced by the increased volume fraction and shear modulus. In NA condition, Cu is greater in improving the volume fraction of clusters than Ag and thus produces higher T4 temper hardness. In AA condition, in contrary, Ag is more effective in facilitating the formation and growth of particles than Cu due to the stronger Ag-Mg interaction and the high diffusivity of Ag atoms in Al matrix, leading to highest hardening response. Compared to the Cu-added alloy, the Ag-added alloy shows higher precipitation kinetics during AA treatment and maintains a lower T4 temper hardness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000441486100032 Publication Date 2018-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 11 Open Access OpenAccess  
  Notes ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant no. cstc2017zdcy-zdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant no. 106112016CDJXZ338825 and 106112017CDJQJ308822) and the program of China Scholarships Council (No. 201706050125). ; Approved Most recent IF: 3.094  
  Call Number UA @ lucian @ c:irua:153107 Serial 5083  
Permanent link to this record
 

 
Author (up) Weng, Y.; Jia, Z.; Ding, L.; Muraishi, S.; Wu, X.; Liu, Q. url  doi
openurl 
  Title The multiple orientation relationships and morphology of beta phase in Al-Mg-Si-Cu alloy Type A1 Journal article
  Year 2018 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 767 Issue 767 Pages 81-89  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The orientation relationships (ORs), segregation behavior and morphologies of beta precipitate in an over aged Al-Mg-Si-Cu alloy are systematically characterized by atomic resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Six different ORs and two morphologies, i.e. rod-and lath-like are revealed for beta precipitates, and Cu segregation at the (beta/alpha-Al interface is observed in all these precipitates. The rod-like beta precipitate has multiple beta-angles ranging from 6.1 to 14.1 degrees and non-uniform Cu segregation at the (beta/alpha-Al interface, while the lath-like beta precipitate has a constant beta-angle of 0 degrees and a periodic Cu segregation. These different ORs are explained to be attributable to the rotation of QP lattice, a near-hexagonal network of Si columns formed within beta precipitates, which causes different lattice matching of beta with alpha-Al lattice. These findings provide new insights in controlling the precipitation hardening and mechanical properties of this type of alloys. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000446316500011 Publication Date 2018-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 4 Open Access OpenAccess  
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDJDCL001910611 and No. 2017CDJQJ308822), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421001) and the program of China Sponsorship Council (No. 201706050125). ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:154720 Serial 5131  
Permanent link to this record
 

 
Author (up) Winckelmans, N. url  openurl
  Title Advanced electron tomography to investigate the growth of homogeneous and heterogeneous nanoparticles Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:153855 Serial 5077  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: