|   | 
Details
   web
Records
Author (up) Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater
Volume 5 Issue 5 Pages 1401997
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000352708600013 Publication Date 2014-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.721 Times cited 30 Open Access OpenAccess
Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146
Call Number c:irua:126000 Serial 2994
Permanent link to this record
 

 
Author (up) Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron
Volume 16 Issue 16 Pages 227-233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000345649500029 Publication Date 2014-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.399 Times cited 24 Open Access OpenAccess
Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827
Call Number c:irua:122169 Serial 2267
Permanent link to this record
 

 
Author (up) Guidini, A.; Flammia, L.; Milošević, M.V.; Perali, A.
Title BCS-BEC crossover in quantum confined superconductors Type A1 Journal article
Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 711-715
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ultranarrow superconductors are in the strong quantum confinement regime with formation of multiple coherent condensates associated with the many subbands of the electronic structure. Here, we analyze the multiband BCS-BEC crossover induced by the chemical potential tuned close to a subband bottom, in correspondence of a superconducting shape resonance. The evolution of the condensate fraction and of the pair correlation length in the ground state as functions of the chemical potential demonstrates the tunability of the BCS-BEC crossover for the condensate component of the selected subband. The extension of the crossover regime increases when the pairing strength and/or the characteristic energy of the interaction get larger. Our results indicate the coexistence of large and small Cooper pairs in the crossover regime, leading to the optimal parameter configuration for high transition temperature superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500034 Publication Date 2015-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 12 Open Access
Notes ; We acknowledge A. Bianconi and A.A. Shanenko for useful discussions. A.P. acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. M.V.M. acknowledges support from the Research Foundation – Flanders (FWO) and the Special Research Funds of the University of Antwerp (BOF-UA). A.P. and M.V.M. acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132287 Serial 4143
Permanent link to this record
 

 
Author (up) Gul, A.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Tomak, A.; Zareie, H.M.; Sahin, H.
Title Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2 Type A1 Journal article
Year 2018 Publication Materials Research Express Abbreviated Journal Mater Res Express
Volume 5 Issue 3 Pages 036415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDTstructure is changed upon conjugation ofHDTon MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000428781400003 Publication Date 2018-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 2 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 116C073. HS acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 1.068
Call Number UA @ lucian @ c:irua:154607UA @ admin @ c:irua:154607 Serial 5133
Permanent link to this record
 

 
Author (up) Gul, B.; Tinck, S.; De Schepper, P.; Aman-ur-Rehman; Bogaerts, A.
Title Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 025202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model is applied to study HBr/He inductively coupled plasmas used for etching of Si. Complete sets of gas-phase and surface reactions are presented and the effects of the gas mixing ratio on the plasma characteristics and on the etch rates are discussed. A comparison with experimentally measured etch rates is made to validate the modelling results. The etch rate in the HBr plasma is found to be quite low under the investigated conditions compared to typical etch rates of Si with F- or Cl-containing gases. This allows for a higher control and fine-tuning of the etch rate when creating ultra-small features. Our calculations predict a higher electron temperature at higher He fraction, because the electrons do not lose their energy so efficiently in vibrational and rotational excitations. As a consequence, electron impact ionization and dissociation become more important, yielding higher densities of ions, electrons and H atoms. This results in more pronounced sputtering of the surface. Nevertheless, the overall etch rate decreases upon increasing He fraction, suggesting that chemical etching is still the determining factor for the overall etch rate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000347980100011 Publication Date 2014-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:121335 Serial 2394
Permanent link to this record
 

 
Author (up) Guo, A.; Bai, H.; Liang, Q.; Feng, L.; Su, X.; Van Tendeloo, G.; Wu, J.
Title Resistive switching in Ag₂Te semiconductor modulated by Ag+-ion diffusion and phase transition Type A1 Journal article
Year 2022 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater
Volume Issue Pages 2200850-2200858
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Memristors are considered to be the fourth circuit element and have great potential in areas like logic operations, information storage, and neuromorphic computing. The functional material in a memristor, which has a nonlinear resistance, is the key component to be developed. Herein, resistive switching is demonstrated and the structural evolutions in Ag2Te are examined under an external electric field. It is shown that the electroresistance effect is originating from an electronically triggered phase transition together with directional Ag+-ion diffusion. Using in situ transmission electron microscopy, the phase transition from the monoclinic alpha-Ag2Te into the face-centered cubic beta-Ag2Te, accompanied by a change in resistance, is directly observed. Diffusion of Ag+-ions modulates the localized density of Ag+-ion vacancies, leading to a change in electrical conductivity and influences the threshold voltage to trigger the phase transition. During the electric field-driven phase transition, the spontaneous and localized multiple polarizations from the low-symmetry alpha-Ag2Te (referring to an antiferroelectric structure) are vanishing in the cubic beta-Ag2Te (referring to a paraelectric structure). The abrupt resistance change of thin Ag2Te caused by the phase transition and modulated by the applied electric field demonstrates its great potential as functional material in volatile memory and memristors with a low-energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000855728500001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.2
Call Number UA @ admin @ c:irua:190582 Serial 7203
Permanent link to this record
 

 
Author (up) Guo, J.; Clima, S.; Pourtois, G.; Van Houdt, J.
Title Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂ Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 117 Issue 26 Pages 262903
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A database-driven approach combined with ab initio density functional theory (DFT) simulations is used to identify and simulate alternative ferroelectric materials beyond Hf(Zr)O-2. The database-driven screening method identifies a class of wurtzite ferroelectric materials. DFT simulations of wurtzite magnesium chalcogenides, including MgS, MgSe, and MgTe, show their potential to achieve improved ferroelectric (FE) stability, simple atomistic unit cell structure, and large FE polarization. Strain engineering can effectively modulate the FE switching barrier height for facilitating FE switching. The effect of the piezoelectric property on the FE switching barrier heights is also examined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000608049700003 Publication Date 2020-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access
Notes Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:176053 Serial 6766
Permanent link to this record
 

 
Author (up) Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M.
Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
Year 2021 Publication Energy Storage Materials Abbreviated Journal
Volume 41 Issue Pages 69-107
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000685118300009 Publication Date 2021-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178744 Serial 8045
Permanent link to this record
 

 
Author (up) Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C.
Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 19 Pages 195204-195210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918954800001 Publication Date 2022-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194384 Serial 7290
Permanent link to this record
 

 
Author (up) Guttmann, P.; Bittencourt, C.; Ke, X.; Van Tendeloo, G.; Umek, P.; Arcon, D.; Ewels, C.P.; Rehbein, S.; Heim, S.; Schneider, G.
Title TXM-NEXAFS of TiO2-based nanostructures Type P1 Proceeding
Year 2011 Publication AIP conference proceedings Abbreviated Journal
Volume 1365 Issue Pages 437-440
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract In this work, electronic properties of individual TiOx-pristine nanoribbons (NR) prepared by hydrothermal treatment of anatase TiO(2) micro-particles were studied using the HZB transmission x-ray microscope (TXM) at the BESSY II undulator beamline U41-FSGM. NEXAFS is ideally suited to study TiO(2)-based materials because both the O K-edge and Ti L-edge features are very sensitive to the local bonding environment, providing diagnostic information about the crystal structures and oxidation states of various forms of titanium oxides and sub-oxides. TXM-NEXAFS combines full-field x-ray microscopy with spectroscopy, allowing the study of the electronic structure of individual nanostructures with spatial resolution better than 25 nm and a spectral resolution of up to E/Delta E = 10000. The typical image field in TXM-NEXAFS measurements is about 10 mu m. 10 mu m, which is large compared to the individual nanoparticle. Therefore, one image stack already contains statistically significant data. In addition, the directional electric field vector ((E) over bar) of the x-rays can be used as a “search tool” for the direction of chemical bonds of the atom selected by its absorption edge.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000298672400103 Publication Date 2011-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113071 Serial 3789
Permanent link to this record
 

 
Author (up) Guttmann, P.; Bittencourt, C.; Rehbein, S.; Umek, P.; Ke, X.; Van Tendeloo, G.; Ewels, C.P.; Schneider, G.
Title Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM Type A1 Journal article
Year 2012 Publication Nature photonics Abbreviated Journal Nat Photonics
Volume 6 Issue 1 Pages 25-29
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Near-edge X-ray absorption spectroscopy (NEXAFS)1 is an essential analytical tool in material science. Combining NEXAFS with scanning transmission X-ray microscopy (STXM) adds spatial resolution and the possibility to study individual nanostructures2, 3. Here, we describe a full-field transmission X-ray microscope (TXM) that generates high-resolution, large-area NEXAFS data with a collection rate two orders of magnitude faster than is possible with STXM. The TXM optical design combines a spectral resolution of E/ΔE = 1 × 104 with a spatial resolution of 25 nm in a field of view of 1520 µm and a data acquisition time of ~1 s. As an example, we present image stacks and polarization-dependent NEXAFS spectra from individual anisotropic sodium and protonated titanate nanoribbons. Our NEXAFS-TXM technique has the advantage that one image stack visualizes a large number of nanostructures and therefore already contains statistical information. This new high-resolution NEXAFS-TXM technique opens the way to advanced nanoscale science studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298416200011 Publication Date 2011-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1749-4885;1749-4893; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.852 Times cited 76 Open Access
Notes Approved Most recent IF: 37.852; 2012 IF: 27.254
Call Number UA @ lucian @ c:irua:94198 Serial 2272
Permanent link to this record
 

 
Author (up) Guzzinati, G.
Title Exploring electron beam shaping in transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130499 Serial 4180
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Béché, A.; Lourenço-Martins, H.; Martin, J.; Kociak, M.; Verbeeck, J.
Title Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 8 Pages 14999
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations’ symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations’ symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399084300001 Publication Date 2017-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 84 Open Access OpenAccess
Notes ; We thank F.J. Garcia de Abajo and D.M. Ugarte for interesting and fruitful discussion. This work was supported by funding from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. Financial support from the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference number 312483 ESTEEM2) is also gratefully acknowledged. Aluminum nanostructures were fabricated using the Nanomat nanofabrication facility. ; Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:142205UA @ admin @ c:irua:142205 Serial 4548
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Prospects for out-of-plane magnetic field measurements through interference of electron vortex modes in the TEM Type A1 Journal article
Year 2019 Publication Journal of optics Abbreviated Journal J Optics-Uk
Volume 21 Issue 12 Pages 124002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Magnetic field mapping in transmission electron microscopy is commonplace, but all conventional methods provide only a projection of the components of the magnetic induction perpendicular to the electron trajectory. Recent experimental advances with electron vortices have shown that it is possible to map the out of plane magnetic induction in a TEM setup via interferometry with a specifically prepared electron vortex state carrying high orbital angular momentum (OAM). The method relies on the Aharonov?Bohm phase shift that the electron undergoes when going through a longitudinal field. Here we show how the same effect naturally occurs for any electron wave function, which can always be described as a superposition of OAM modes. This leads to a clear connection between the occurrence of high-OAM partial waves and the amount of azimuthal rotation in the far field angular distribution of the beam. We show that out of plane magnetic field measurement can thus be obtained with a much simpler setup consisting of a ring-like aperture with azimuthal spokes. We demonstrate the experimental setup and explore the achievable sensitivity of the magnetic field measurement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000499367800001 Publication Date 2019-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.741 Times cited 3 Open Access
Notes The authors thank V Grillo and T Harvey for interesting and fruitful discussion. GG acknowledges support from a postdoctoral fellow-ship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. AB acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). DM gratefully acknowledges funding of the FEBID capability through joint funding by University of Glasgow & EPSRC through a Strategic Equipment Grant (EP/P001483/1). Approved Most recent IF: 1.741
Call Number UA @ admin @ c:irua:165116 Serial 6319
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169135 Serial 6883
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J.
Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 85-93
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000351237800012 Publication Date 2014-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 19 Open Access
Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J.
Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue Pages 025803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000332224100014 Publication Date 2014-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 42 Open Access
Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Das, P.P.; Zompra, A., A.; Nicopoulos, S.; Verbeeck, J.
Title Electron energy loss spectra of several organic compounds Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We placed crystals of different compounds to explore the possibility of fingerprinting them through EELS. Here are representative datasets of 7 different compounds: b-cyclodextrin hexacarboxy cyclohexane tannin TH-15 peptide TH-27 peptide two different forms of piroxicam The datasets were collected at EMAT, using a monochromated FEI Titan3 TEM, within the scope of an EUSMI request. More information as well as analysis methodologies adopted for the data are detailed in the paper: Das et al. “Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy”, Polymers 2020, 12(7), 1434.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180654 Serial 6866
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 114 Issue 24 Pages 243501
Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472599100019 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 17 Open Access OpenAccess
Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved Most recent IF: 3.411
Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169114 Serial 6865
Permanent link to this record
 

 
Author (up) Guzzinati, G.; Schattschneider, P.; Bliokh, K.Y.; Nori, F.; Verbeeck, J.
Title Observation of the Larmor and Gouy rotations with electron vortex beams Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 9 Pages 093601
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams carrying intrinsic orbital angular momentum (OAM) are produced in electron microscopes where they are controlled and focused by using magnetic lenses. We observe various rotational phenomena arising from the interaction between the OAM and magnetic lenses. First, the Zeeman coupling, proportional to the OAM and magnetic field strength, produces an OAM-independent Larmor rotation of a mode superposition inside the lens. Second, when passing through the focal plane, the electron beam acquires an additional Gouy phase dependent on the absolute value of the OAM. This brings about the Gouy rotation of the superposition image proportional to the sign of the OAM. A combination of the Larmor and Gouy effects can result in the addition (or subtraction) of rotations, depending on the OAM sign. This behavior is unique to electron vortex beams and has no optical counterpart, as Larmor rotation occurs only for charged particles. Our experimental results are in agreement with recent theoretical predictions.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000315380800005 Publication Date 2013-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 91 Open Access
Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:106181UA @ admin @ c:irua:106181 Serial 2422
Permanent link to this record
 

 
Author (up) Gvozdetskyi, V.; Bhaskar, G.; Batuk, M.; Zhao, X.; Wang, R.; Carnahan, S.L.; Hanrahan, M.P.; Ribeiro, R.A.; Canfield, P.C.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J.V.
Title Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs Type A1 Journal article
Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 58 Issue 44 Pages 15855-15862
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two novel lithium nickel boride polymorphs RT-LiNiB and HT-LiNiB with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized via a hydride route with LiH precursor as a lithium source. Being unique among the known ternary transition metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers, composed of Ni hexagonal rings centered by B-B pairs. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction data, solid-state 7Li and 11B NMR, scanning transmission electron microscopy, quantum chemistry calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors to further study their exfoliation, paving a way toward two-dimensional transition metal borides, MBenes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000491219600038 Publication Date 2019-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access
Notes the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4411. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract #DE-AC02-07CH11358. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Approved Most recent IF: 11.994
Call Number EMAT @ emat @c:irua:164752 Serial 5433
Permanent link to this record
 

 
Author (up) György, K.; Ajtony, Z.; van Meel, K.; Van Grieken, R.; Czitrovszky, A.; Bencs, L.
Title Fast heating induced impulse halogenation of refractory sample components in electrothermal atomic absorption spectrometry by direct injection of a liquid halogenating agent Type A1 Journal article
Year 2011 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 85 Issue 3 Pages 1253-1259
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A novel electrothermal atomic absorption spectrometry (ETAAS) method was developed for the halogenation of refractory sample components (Er, Nd and Nb) of lithium niobate (LiNbO3) and bismuth tellurite (Bi2TeO5) optical single crystals to overcome memory effects and carry-over. For this purpose, the cleaning step of a regular graphite furnace heating program was replaced with a halogenation cycle. In this cycle, after the graphite tube cooled to room temperature, a 20 μL aliquot of liquid carbon tetrachloride (CCl4) was dispensed with a conventional autosampler into the graphite tube. The CCl4 was partially dried at 80 °C under the mini-flow (40 cm3 min−1) condition of the Ar internal furnace gas (IFG), then the residue was decomposed (pyrolyzed) by fast furnace heating at 19002100 °C under interrupted flow of the IFG. This step was followed by a clean-out stage at 2100 °C under the maximum flow of the IFG. The advantage of the present method is that it does not require any alteration to the graphite furnace gas supply system in contrast to most of the formerly introduced halogenation techniques. The effectiveness of the halogenation method was verified with the determination of Er and Nd dopants in the optical crystals. In these analyses, a sensitivity decrease was observed, which was likely due to the enhanced deterioration of the graphite tube surface. Therefore, the application of mathematical correction (resloping) of the calibration was also required. The calibration curves were linear up to 1.5 and 10 μmol L−1 for Er and Nd, respectively. Characteristic masses of 18 and 241 pg and the limit of detection (LOD) values of 0.017 and 0.27 μmol L−1 were found for Er and Nd, respectively. These LOD data correspond to 0.68 μmol mol−1 Er and 11 μmol mol−1 Nd in solid bismuth tellurite samples. The analytical results were compared with those obtained by a conventional ETAAS method and validated with X-ray fluorescence spectrometry analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294092800006 Publication Date 2011-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:91721 Serial 7960
Permanent link to this record
 

 
Author (up) Gysels, K.; Delalieux, F.; Deutsch, F.; Van Grieken, R.; Camuffo, D.; Bernardi, A.; Sturaro, G.; Busse, H.-J.; Wieser, M.
Title Indoor environment and conservation in the Royal Museum of Fine Arts, Antwerp, Belgium Type A1 Journal article
Year 2004 Publication Journal of cultural heritage Abbreviated Journal
Volume 5 Issue Pages 221-230
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000222196400010 Publication Date 2004-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:44970 Serial 8084
Permanent link to this record
 

 
Author (up) Gysels, K.; Deutsch, F.; Van Grieken, R.
Title Characterisation of particulate matter in the Royal Museum of Fine Arts, Antwerp, Belgium Type A1 Journal article
Year 2002 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 36 Issue Pages 4103-4113
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000178473100009 Publication Date 2002-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:40620 Serial 7600
Permanent link to this record
 

 
Author (up) Gysels, K.; Van Grieken, R.
Title Field evaluation of a wind tunnel-impactor system for sampling ambient aerosols Type A1 Journal article
Year 1999 Publication Journal of aerosol science Abbreviated Journal
Volume 30 Issue 5 Pages 639-650
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000079182300008 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8502; 1879-1964 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:23180 Serial 7966
Permanent link to this record
 

 
Author (up) Gysels, K.; Van Grieken, R.
Title Microanalysis of museum aerosols related to the conservation of works of art Type P3 Proceeding
Year 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:24719 Serial 8236
Permanent link to this record
 

 
Author (up) H. Zhang, N. Gauquelin, G.A. Botton and J.Y.T. Wei
Title Attenuation of superconductivity in manganite/cuprate heterostructures by epitaxially induced CuO intergrowths Type A1 Journal Article
Year 2013 Publication Applied Physics Letters Abbreviated Journal
Volume 103 Issue Pages 052606
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We examine the effect of CuO intergrowths on the superconductivity in epitaxial

La 2/3 Ca 1/3 MnO 3 / YBa 2 Cu 3 O 7−δ La2/3Ca1/3MnO3/YBa2Cu3O7−δ

(LCMO/YBCO) thin-film heterostructures. Scanning transmission electron microscopy on bilayer LCMO/YBCO thin films revealed double CuO-chain intergrowths which form regions with the 247 lattice structure in the YBCO layer. These nanoscale 247 regions do not appear in x-ray diffraction, but can physically account for the reduced critical temperature (Tc) of bilayer thin films relative to unilayer films with the same YBCO thickness, at least down to ∼25 nm. We attribute the CuO intergrowths to the bilayer heteroepitaxial mismatch and the Tc reduction to the generally lower Tc seen in bulk 247 samples. These epitaxially-induced CuO intergrowths provide a microstructural mechanism for the attenuation of superconductivity in LCMO/YBCO heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322723000063 Publication Date 2013-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 12 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4546
Permanent link to this record
 

 
Author (up) Habermeier, H.-U.; Cristiani, G.; Kremer, R.K.; Lebedev, O.; Van Tendeloo, G.
Title Cuprate/manganite superlattices: a model system for a bulk ferromagnetic superconductor Type A1 Journal article
Year 2001 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 364/365 Issue Pages 298-304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000172155700069 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 91 Open Access
Notes Approved Most recent IF: 1.404; 2001 IF: 0.806
Call Number UA @ lucian @ c:irua:54794 Serial 591
Permanent link to this record