toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perreault, P.; Preuster, P. pdf  doi
openurl 
  Title Editorial hydrogen production storage and use Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 44 Issue Pages 100861-100863  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the pursuit of clean and sustainable energy sources, hydrogen has emerged as a key contender, offering high energy density and the potential to serve as a carbon-neutral fuel. However, one of the major challenges associated with hydrogen is efficient and safe storage and transportation. In this Special Edition, we delve into the exciting developments in the upcoming hydrogen economy, from its sustainable production to chemical hydrogen storage. Some of our reviews focus on particular technologies namely on liquid organic hydrogen carriers (LOHCs) and the utilization of ammonia as a hydrogen carrier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079651000001 Publication Date 2023-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:198505 Serial 8853  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Mul, G. pdf  doi
openurl 
  Title Editorial overview : photocatalysis 2022 shining light on a diversity of research opportunities Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 42 Issue Pages 100838-2  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034184800001 Publication Date 2023-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:197220 Serial 8854  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 188 Issue 188 Pages 147-153  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We propose the concept of a ‘rainbow’ photocatalyst that consists of TiO2 modified with gold-silver alloy nanoparticles of various sizes and compositions, resulting in a broad plasmon absorption band that covers the entire UV–vis range of the solar spectrum. It is demonstrated that this plasmonic ‘rainbow’ photocatalyst is 16% more effective than TiO2 P25 under both simulated and real solar light for pollutant degradation at the solid-gas interface. With this we provide a promising strategy to maximize the spectral response for solar to chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372677500016 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 47 Open Access OpenAccess  
  Notes S.W.V. and B.G. acknowledge the Research Foundation—Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges IWT for the doctoral scholarship. S.B. acknowledges the European Research Council (ERC) for financial support through the ERC grant agreement no. 335078-COLOURATOM. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (up) Most recent IF: 9.446  
  Call Number c:irua:130995 Serial 4061  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 200 Issue 200 Pages 31-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384775600004 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 45 Open Access OpenAccess  
  Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (up) Most recent IF: 9.446  
  Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104  
Permanent link to this record
 

 
Author Liao, L.; Heylen, S.; Sree, S.P.; Vallaey, B.; Keulemans, M.; Lenaerts, S.; Roeffaers, M.B.J.; Martens, J.A. doi  openurl
  Title Photocatalysis assisted simultaneous carbon oxidation and NOx reduction Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 202 Issue Pages 381-387  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalysis assisted oxidation of carbon black was performed using TiO2 photocatalyst under UV illumination in an atmosphere with NO, O-2 and water vapor at 150 degrees C. Carbon is oxidized mainly to CO2 while NO is selectively converted to N-2. Enhanced O-2 and NO concentrations have a positive effect on the carbon oxidation rate. At a concentration of 3000 ppm NO and 13.3% O-2 in the gas phase the carbon oxidation rate reaches 2.3 mu g(carbon)/mg(TiO2) h, at a formal electron/photon quantum efficiency of 0.019. HR SEM images reveal uniform gradual reduction of the carbon particle size irrespective of the distance to TiO2 photocatalyst particles in the presence of NO, O-2 and H2O. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388052100038 Publication Date 2016-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 11 Open Access  
  Notes ; This work was supported by long-term structural funding by the Flemish government (Methusalem). M. Keulemans acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (PhD. Grant). M. Roeffaers thanks the ERC for financial support (ERC Starting Grant No. 307523). ; Approved (up) Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:139156 Serial 5976  
Permanent link to this record
 

 
Author Ouwehand, J.; Van Eynde, E.; De Canck, E.; Lenaerts, S.; Verberckmoes, A.; Van der Voort, P. pdf  url
doi  openurl
  Title Titania-functionalized diatom frustules as photocatalyst for indoor air purification Type A1 Journal article
  Year 2018 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 226 Issue 226 Pages 303-310  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diatom frustules were extracted from the species Thalassiosira pseudonana and functionalized with titania to be used as photocatalysts in the abatement of acetaldehyde. The synthetic procedure is water-based and environmentally friendly. The synthesis parameters were optimized to give the highest possible photocatalytic activity. The optimized material, visualized with TEM and STEM-EDX, shows the TiO2 nanoparticles grafted inside the frustule pores, as well as on the silica surface. The titania particles, stabilized by the frustules, are 2.5 times more active than the P25 benchmark material. The photocatalyst is then tested in conditions of elevated relative humidity, to simulate indoor air. The catalytic activity only shows a minor decrease at 50% relative humidity, which is a better result than for the P25 benchmark. When tested over an extended period of time, the photocatalyst only shows a minor decrease in activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425476800033 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 4 Open Access  
  Notes ; The authors are grateful to the Flemish government (VLAIO) for providing funding through grant number 150663. The Thalassiosira Pseudonana algae were kindly provided by TomAlgae. The authors thank Katrien Haustraete, Sander Clerick and Funda Alic for performing TEM and STEM-EDX, SEM and CHN analyses, respectively, and Isabelle Ascoop for fruitful discussions. ; Approved (up) Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:149836 Serial 5999  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Hauchecorne, B.; Terrens, D.; Verbruggen, S.; Martens, J.A.; van Langenhove, H.; Demeestere, K.; Lenaerts, S. pdf  doi
openurl 
  Title Elucidating the photocatalytic degradation pathway of acetaldehyde : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 106 Issue 3/4 Pages 630-638  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, new insights of the photocatalytic oxidation pathway of acetaldehyde are obtained by means of an in-house constructed FTIR in situ reactor. It is shown that there are generally three different intermediates present: acetic acid, formic acid and formaldehyde. By means of FTIR in situ spectroscopy, this study revealed that these intermediates are bound on the TiO2 surface in different ways, resulting in the presence of more intermediate species, such as molecularly adsorbed acetic acid, bidentate acetate, molecularly adsorbed formic acid, monodentate formate, bidentate formate, formaldehyde and dioxymethylene. Furthermore, spectroscopic evidence is obtained concerning the formation of 3-hydroxybutanal and crotonaldehyde upon adsorption of acetaldehyde on TiO2 prior to UV illumination. The presented results thus give new insights in the photocatalytic oxidation pathway of acetaldehyde.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294092400042 Publication Date 2011-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 46 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research. ; Approved (up) Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:92433 Serial 5948  
Permanent link to this record
 

 
Author Hauchecorne, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic degradation of ethylene : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 105 Issue 1/2 Pages 111-116  
  Keywords A1 Journal article; Engineering sciences. Technology; Molecular Spectroscopy (MolSpec); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, the reaction mechanism of the photocatalytic oxidation of ethylene is elucidated by means of an in-house developed FTIR in situ reactor. This reactor allowed us to look at the catalytic surface at the moment the reactions actually occur. This new approach gave some exciting new insights in how ethylene is photocatalytically oxidised. It was found that there is a change in dipole moment of the ethylene molecule when it is brought in the neighbourhood of the catalyst. From this finding, a hypothesis was formulated on how the CC-bond from ethylene will break. It was found that the aforementioned interaction between the catalyst and the molecule, allows the excited electrons from the UV irradiated catalyst to occupy the lowest unoccupied molecular orbital (LUMO) of the ethylene molecule through a process known as backdonation. Following this hypothesis, it was found that the degradation occurs through the formation of two intermediates: formaldehyde and formic acid, for which formaldehyde is bound in two different ways (coordinatively and as bidentate). Finally CO2 and H2O are found as end products, resulting in the complete mineralisation of the pollutant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291907400013 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 29 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research; Evonik, who delivered the photocatalyst and the 3rd grade bachelor students of the bio-science engineering department, who accompanied us in this work: Britt Berghmans, Margot Goossens, Ozlem Kocak and Laurent Van Linden. ; Approved (up) Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:89256 Serial 5978  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S. pdf  url
doi  openurl
  Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 160 Issue Pages 204-210  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000340687900024 Publication Date 2014-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 37 Open Access OpenAccess  
  Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (up) Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:117094 Serial 2608  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 156 Issue Pages 116-121  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336013200014 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 84 Open Access  
  Notes Flanders(FWO); Methusalem Approved (up) Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:115552 Serial 2646  
Permanent link to this record
 

 
Author Liao, L.; Heylen, S.; Vallaey, B.; Keulemans, M.; Lenaerts, S.; Roeffaers, M.B.J.; Martens, J.A. pdf  doi
openurl 
  Title Photocatalytic carbon oxidation with nitric oxide Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 166 Issue Pages 374-380  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The photocatalytic oxidation of carbon black on TiO2 using nitric oxide as an oxidizing agent was investigated. Layer-wise deposited carbon and TiO2 powder was illuminated with UVA light in the presence of NO at parts per million concentrations in dry and hydrated carrier gas at a temperature of 150 degrees C. Carbon was photocatalytically converted mainly into CO2, and NO mainly into N-2. Carbon oxidation rates of 7.2 mu g/h/mgTiO(2) were achieved in the presence of 3000 ppm NO. Under these experimental conditions in the absence of molecular oxygen, formation of surface nitrates causing TiO2 photocatalyst deactivation is suppressed. Addition of water enhances surface nitrate formation and catalyst deactivation. NO and carbon particulate matter are air pollutants emitted by diesel engines. Elimination of soot collected on a diesel particulate filter through oxidation is a demanding reaction requiring temperatures in excess of 250 degrees C. The present study opens perspectives for a low-temperature regeneration strategy for the diesel particulate filter that simultaneously performs DeNO(x) reactions. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348753400042 Publication Date 2014-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 5 Open Access  
  Notes ; This work was supported by long-term structural funding by the Flemish government (Methusalem). ; Approved (up) Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number UA @ admin @ c:irua:123858 Serial 5977  
Permanent link to this record
 

 
Author Minjauw, M.M.; Solano, E.; Sree, S.P.; Asapu, R.; Van Daele, M.; Ramachandran, R.K.; Heremans, G.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Detavernier, C.; Dendooven, J. pdf  doi
openurl 
  Title Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 17 Pages 7114-7121  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A plasma-enhanced atomic layer deposition (ALD) process using the Ag(fod)(PEt3) precursor [(triethylphosphine)(6,6,7,7,8,8,8-heptafluoro-2,2-dimethy1-3,5-octanedionate)silver(I)] in combination with NH3-plasma is reported. The steady growth rate of the reported process (0.24 +/- 0.03 nm/cycle) was found to be 6 times larger than that of the previously reported Ag ALD process based on the same precursor in combination with H-2-plasma (0.04 +/- 0.02 nm/cycle). The ALD characteristics of the H-2-plasma and NH3-plasma processes were verified. The deposited Ag films were polycrystalline face-centered cubic Ag for both processes. The film morphology was investigated by ex situ scanning electron microscopy and grazing-incidence small-angle X-ray scattering, and it was found that films grown with the NH3-plasma process exhibit a much higher particle areal density and smaller particle sizes on oxide substrates compared to those deposited using the H-2-plasma process. This control over morphology of the deposited Ag is important for applications in catalysis and plasmonics. While films grown with the H-2-plasma process had oxygen impurities (similar to 9 atom %) in the bulk, the main impurity for the NH3-plasma process was nitrogen (similar to 7 atom %). In situ Fourier transform infrared spectroscopy experiments suggest that these nitrogen impurities are derived from NH surface groups generated during the NH3-plasma, which interact with the precursor molecules during the precursor pulse. We propose that the reaction of these surface groups with the precursor leads to additional deposition of Ag atoms during the precursor pulse compared to the H-2-plasma process, which explains the enhanced growth rate of the NH3-plasma process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410868600012 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes ; M.M.M. and J.D. acknowledge the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO Vlaanderen) for financial support through a personal research grant. We also acknowledge FWO Vlaanderen for providing project funding for this work. We are grateful to the ESRF staff for smoothly running the synchrotron and beamline facilities. We also thank Olivier Janssens for performing the SEM measurements and Stefaan Broekaert for mechanical assistance. J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem). ; Approved (up) Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:146757 Serial 5983  
Permanent link to this record
 

 
Author Xie, Y.; Spiller, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers : mineralization and nitrification performance complemented with economic aspects Type A1 Journal article
  Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 806 Issue Pages 150415  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Due to the high water- and nutrient-use efficiency, hydroponic cultivation is increasingly vital in progressing to environment-friendly food production. To further alleviate the environmental impacts of synthetic fertilizer production, the use of recovered nutrients should be encouraged in horticulture and agriculture at large. Solid organic fertilizers can largely contribute to this, yet their physical and chemical nature impedes application in hydroponics. This study proposes a bioreactor for mineralization and nitrification followed by a supplementation step for limiting macronutrients to produce nitrate-based solutions from solid fertilizers, here based on a novel microbial fertilizer. Batch tests showed that aerobic conversions at 35 °C could realize a nitrate (NO₃−-N) production efficiency above 90% and a maximum rate of 59 mg N L−1 d−1. In the subsequent bioreactor test, nitrate production efficiencies were lower (44–51%), yet rates were higher (175–212 mg N L−1 d−1). Calcium and magnesium hydroxide were compared to control the bioreactor pH at 6.0 ± 0.2, while also providing macronutrients for plant production. A mass balance estimation to mimic the Hoagland nutrient solution showed that 92.7% of the NO₃−-N in the Ca(OH)₂ scenario could be organically sourced, while this was only 37.4% in the Mg(OH)₂ scenario. Besides, carbon dioxide (CO₂) generated in the bioreactor can be used for greenhouse carbon fertilization to save operational expenditure (OPEX). An estimation of the total OPEX showed that the production of a nutrient solution from solid organic fertilizers can be cost competitive compared to using commercially available liquid inorganic fertilizer solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000707640400021 Publication Date 2021-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:181787 Serial 7132  
Permanent link to this record
 

 
Author Peng, L.; Lou, W.; Xu, Y.; Yu, S.; Liang, C.; Alloul, A.; Song, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10 Type A1 Journal article
  Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 822 Issue Pages 153489  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57–1.08 g biomass g−1 CODremoved and 0.48–0.71 d−1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2–1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g−1 CODremoved and 0.71 d−1) and the highest biomass quality (protein content of 609 mg g−1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g−1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L−1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g−1 DCW d−1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766801800010 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:185706 Serial 7202  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Xie, Y.; Timmer, M.J.; Peng, L.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Storage without nitrite or nitrate enables the long-term preservation of full-scale partial nitritation/anammox sludge Type A1 Journal article
  Year 2022 Publication The science of the total environment Abbreviated Journal Sci Total Environ  
  Volume 806 Issue 3 Pages 151330  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bioaugmentation with summer harvested sludge during winter could compensate for bacterial activity loss but requires that sludge activity can be restored after storage. This study assesses the effect of temperature and redox adjustment during the storage over 180 days of partial nitritation/anammox (PN/A) granular resp. floccular sludge from potato processing resp. sludge reject water treatment. Anoxic storage conditions (in the presence of nitrite or nitrate and the absence of oxygen) resulted in a loss of 80-100% of the anammox bacteria (AnAOB) activity capacity at 20 degrees C and 4 degrees C, while anaerobic conditions (without oxygen, nitrite, and nitrate) lost only 45-63%. Storage at 20 degrees C was more cost-effective compared to 4 degrees C, and this was confirmed in the sludge reactivation experiment (20 CC). Furthermore, AnAOB activity correlated negatively with the electrical conductivity level (R-2 > 0.85, p < 0.05), so strong salinity increases should be avoided. No significant differences were found in the activity capacity of aerobic ammonia-oxidizing bacteria (AerAOB) under different storage conditions (p > 0.1). The relative abundance of dominant AnAOB (Candidatus Brocadia) and AerAOB genera (Nitrosomonas) remained constant in both sludges. In conclusion, preserving PN/A biomass without cooling and nitrite or nitrate addition proved to be a cost-effective strategy. (C) 2021 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740216300013 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:185447 Serial 7213  
Permanent link to this record
 

 
Author Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
  Year 2023 Publication The science of the total environment Abbreviated Journal  
  Volume 866 Issue Pages 161172-161179  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000922040000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 9.8; 2023 IF: 4.9  
  Call Number UA @ admin @ c:irua:192943 Serial 7297  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. url  doi
openurl 
  Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
  Year 2020 Publication Desalination Abbreviated Journal Desalination  
  Volume 495 Issue Pages 114634  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582172900007 Publication Date 2020-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved (up) Most recent IF: 9.9; 2020 IF: 5.527  
  Call Number UA @ admin @ c:irua:171514 Serial 6523  
Permanent link to this record
 

 
Author Goorden, L.; Van Tendeloo, G.; Lenaerts, S.; Deblonde, M.; et al. pdf  openurl
  Title Nanotechnologie: gewikt en gewogen Type Minutes and reports
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Minutes and reports; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher NanoSoc Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82905 Serial 2277  
Permanent link to this record
 

 
Author Goorden, L.; Van Tendeloo, G.; Lenaerts, S.; Deblonde, M.; van Oudheusden, M.; et al. pdf  openurl
  Title Nanotechnologie op de agenda Type Minutes and reports
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Minutes and reports; Engineering sciences. Technology; Engineering Management (ENM); Society and Environment; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher NanoSoc Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82903 Serial 2278  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved (up) Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
  Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 3 Issue 6 Pages 1388-1395  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469258600021 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved (up) Most recent IF: NA  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188  
Permanent link to this record
 

 
Author Hofman, J.; Samson, R.; Joosen, S.; Blust, R.; Lenaerts, S. pdf  url
doi  openurl
  Title Cyclist exposure to black carbon, ultrafine particles and heavy metals : an experimental study along two commuting routes near Antwerp, Belgium Type A1 Journal article
  Year 2018 Publication Environmental research Abbreviated Journal  
  Volume 164 Issue 164 Pages 530-538  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urban environments typically exhibit large atmospheric pollution variation, in both space and time. In contrast to traditional monitoring networks suffering from a limited spatial coverage, mobile platforms enable personalized high-resolution monitoring, providing valuable insights into personal atmospheric pollution exposure, and the identification of potential pollution hotspots. This study evaluated personal cyclist exposure to UFPs, BC and heavy metals whilst commuting near Antwerp, Belgium, by performing mobile measurements with wearable black carbon (BC) and ultrafine particle (UFP) instruments. Loaded micro-aethalometer filterstrips were chemically analysed and the inhaled pollutant dose determined from the exhibited heart rate. Considerable spatial pollutant variation was observed along the travelled routes, with distinct contributions from spatial factors (e.g. traffic intersections, urban park and market) and temporary events. On average 300% higher BC, 20% higher UFP and changing elemental concentrations are observed along the road traffic route (RT), when compared to the bicycle highway route (BH). Although the overall background pollution determines a large portion of the experienced personal exposure (in this case 53% for BC and 40% for UFP), cyclists can influence their personal atmospheric pollution exposure, by selecting less exposed commuting routes. Our results, hereby, strengthen the body of evidence in favour of further policy investments in isolated bicycle infrastructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431387100063 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; The authors would like to acknowledge the Flanders Environment Agency (VMM) for granting access to the 42R817 monitoring station and provision of telemetric pollutant and meteorological data. The corresponding author acknowledges the Research Foundation Flanders (FWO) for his postdoctoral research grant (12I4816N). ; Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:150540 Serial 5939  
Permanent link to this record
 

 
Author Smits, M.; Tytgat, T.; Hauchecorne, B.; Lenaerts, S. isbn  openurl
  Title Development and validation of optical detection methods to screen photocatalytic materials for soot oxidation Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:98814 Serial 5941  
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.; Hauchecorne, B.; Blust, R.; Lenaerts, S. openurl 
  Title Diatom silica-titania materials for photocatalytic air purification Type A2 Journal article
  Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 1 Issue 1 Pages 141-147  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:105334 Serial 5943  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, S. isbn  openurl
  Title Diatom silica-titania materials for photocatalytic air purification Type H3 Book chapter
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages 240-241  
  Keywords H3 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:105335 Serial 5944  
Permanent link to this record
 

 
Author Smits, M.; Vanpachtenbeke, F.; Hauchecorne, B.; van Langenhove, H.; Demeestere, K.; Lenaerts, S. openurl 
  Title Exhaust composition of a small diesel engine Type A2 Journal article
  Year 2012 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 77 Issue 1 Pages 85-88  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:94166 Serial 5949  
Permanent link to this record
 

 
Author Tytgat, T.; Lenaerts, S. isbn  openurl
  Title Immobilisation of TiO2 into self-supporting photocatalytic foam : influence of acidity on porosity and light penetration Type P3 Proceeding
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-97667-4-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:99066 Serial 5959  
Permanent link to this record
 

 
Author de Baere, K.; Verstraelen, H.; Lemmens, L.; Lenaerts, S.; Potters, G. openurl 
  Title In situ study of the parameters quantifying the corrosion in ballast tanks and an evaluation of improving alternative Type P3 Proceeding
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract An in situ study of more than 100 ballast tanks of merchant marine vessels looks to the corrosion process in these tanks from another perspective. The developed corrosion model shows major similarities with earlier studies based on laboratory experiments. The field work exposes the influence of ship construction parameters such as land of construction, coating type and the presence of sacrificial anodes on the corrosion process in the ballast tanks. Possible alternatives for vessels constructed with ordinary grade A steel and coated according to IMO PSPC standards are presented, even though further research is required to come to final conclusions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:88937 Serial 5965  
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S. pdf  openurl
  Title Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis Type A1 Journal article
  Year 2013 Publication Journal of environmental solutions Abbreviated Journal  
  Volume 2 Issue 1 Pages 16-24  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The combination of a non-thermal plasma with catalysis is considered as a sustainable indoor air purification technology to achieve complete oxidation at reduced energy cost with a longer electrode lifetime. An optimal window of operation for plasma assisted catalysis is found by varying the polarity, the applied voltage, the relative humidity of the gas phase and the configuration of the plasma reactor. The results show that, in general, negative corona discharge can obtain higher nitric oxide (NO) conversion efficiencies compared to positive corona. It is also clear that at higher applied voltages, higher conversion efficiency can be reached. The effect of relative humidity, however, is not found to be significant in the range (0 20.3 %) tested in this work. Additionally, the configuration of the plasma reactor is changed by varying the amount of pins that are attached at the collector electrode. The results show that there is an optimum at 10 pairs of pins to obtain a high conversion efficiency of NO. By applying a coating on the collector electrode of the plasma reactor, it is possible to see the influence of the coating on the performance of the plasma system, which was operating in the previously found optimal window. It stands clear that the use of a plasma assisted catalysis system has high potential as an integrated and sustainable indoor air purification technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved (up) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:108646 Serial 5966  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: