toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Kerf, T.; Gestels, A.; Janssens, K.; Scheunders, P.; Steenackers, G.; Vanlanduit, S. url  doi
openurl 
  Title Quantitative detection of corrosion minerals in carbon steel using shortwave infrared hyperspectral imaging Type A1 Journal article
  Year 2022 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 12 Issue 50 Pages 32775-32783  
  Keywords A1 Journal article; Engineering sciences. Technology; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This study presents a novel method for the detection and quantification of atmospheric corrosion products on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900-1700 nm), we are able to identify the most common corrosion minerals such as: alpha-FeO(OH) (goethite), gamma-FeO(OH) (lepidocrocite), and gamma-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI data set. Using the trained model, we can predict the abundance map based on the HSI images alone. Several image correlation metrics are used to assess the similarity between the original XRD images and the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27 to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion minerals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885554600001 Publication Date 2022-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:192085 Serial 7334  
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Van Rompaey, A.; Van Passel, S.; Adgo, E.; Minale, A.S.; Asrese, K.; Frankl, A.; Poesen, J. url  doi
openurl 
  Title Benefit segmentation of tourists to geosites and its implications for sustainable development of geotourism in the Southern Lake Tana Region, Ethiopia Type A1 Journal article
  Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 14 Issue 6 Pages 3411-3425  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Geotourism is a sustainable type of tourism that focuses on the geological and geomorphological heritages of an area, and the associated cultural and biodiversity features. Though the popularity of geotourism is rapidly growing, research on the demand side, particularly on segmenting tourists to geosites and understanding their profiles, is limited. This obviously makes the designing of effective tourism policies that aim at developing geotourism sustainably very difficult. Hence, the main objectives of this study were to segment and profile tourists to geosites based on the benefits sought, and to show its implications for sustainable development of geotourism. With a survey of 415 tourists, this study clustered tourists to geosites in the southern Lake Tana region in Ethiopia based on the benefits sought. A factor-cluster method was applied to segment the tourists. The study identified four distinct segments: Activity-Nature Lovers, Culture Lovers, Nature-Culture Lovers, and Want-It-Alls. These segments differed in their demographic, trip, and behavioral characteristics. The findings implied that for sustainable development, destination managers and marketers need to customize their geotourism product development and marketing strategies based on the needs and characteristics of each market segment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000774527600001 Publication Date 2022-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:188043 Serial 7353  
Permanent link to this record
 

 
Author Dehhaghi, S.; Choobchian, S.; Ghobadian, B.; Farhadian, H.; Viira, A.-H.; Stefanie, H.I.; Van Passel, S.; Azadi, H. url  doi
openurl 
  Title Five-year development plans of renewable energy policies in Iran : a content analysis Type A1 Journal article
  Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 14 Issue 3 Pages 1501  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Renewable energy (RE) policies can play an effective role in the development of renewable resources. The main goal of this paper was to conduct a content analysis on RE development policies in Iran's five-year National Development Plan (NDP) by investigating upstream national documents. To achieve the goal, 29 upstream documents related to RE were identified and analyzed through a systematic literature review. Then, a qualitative content analysis was applied to analyze the documents. The results showed that Iran's current RE policies need to be reviewed, reformed, and strengthened. For example, lack of sufficient attention to renewable heat and fuel was one of the deficiencies of RE policies in Iran's five-year NDP. The decentralization of policymaking in the unified organization was also one of the weaknesses in the policymaking process of the RE. Iran can develop sustainable and clean RE policies by using sources such as solar, wind, geothermal, hydropower, wave, and tidal power. The paper concludes that, although RE policies have the potential for development in Iran due to environmental, social, and economic advantages, they could face some infrastructural, managerial, socio-cultural, and economic challenges. Accordingly, effective and innovative policymaking is required to meet such challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000754912800001 Publication Date 2022-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:186501 Serial 7358  
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M. url  doi
openurl 
  Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
  Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal  
  Volume 5 Issue 11 Pages 1051-1060  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884939300006 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 32 Open Access OpenAccess  
  Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved (up) Most recent IF: 37.8  
  Call Number EMAT @ emat @c:irua:192068 Serial 7230  
Permanent link to this record
 

 
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved (up) Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author Gao, C.; Hofer, C.; Jannis, D.; Béché, A.; Verbeeck, J.; Pennycook, T.J. pdf  url
doi  openurl
  Title Overcoming contrast reversals in focused probe ptychography of thick materials: An optimal pipeline for efficiently determining local atomic structure in materials science Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 8 Pages 081906  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ptychography provides highly efficient imaging in scanning transmission electron microscopy (STEM), but questions have remained over its applicability to strongly scattering samples such as those most commonly seen in materials science. Although contrast reversals can appear in ptychographic phase images as the projected potentials of the sample increase, we show here how these can be easily overcome by a small amount of defocus. The amount of defocus is small enough that it not only can exist naturally when focusing using the annular dark field (ADF) signal but can also be adjusted post acquisition. The ptychographic images of strongly scattering materials are clearer at finite doses than other STEM techniques and can better reveal light atomic columns within heavy lattices. In addition, data for ptychography can now be collected simultaneously with the fastest of ADF scans. This combination of sensitivity and interpretability presents an ideal workflow for materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000844403300006 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 9 Open Access OpenAccess  
  Notes European Research Council, 802123-HDEM ; HORIZON EUROPE European Research Council, 823717-ESTEEM3 ; Fonds Wetenschappelijk Onderzoek, G042920N ; Fonds Wetenschappelijk Onderzoek, G042820N ; Horizon 2020 Framework Programme, 101017720 ; Fonds Wetenschappelijk Onderzoek, G013122N ; esteem3reported; esteem3jra Approved (up) Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:190670 Serial 7120  
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. url  doi
openurl 
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 11 Pages 112405-112407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863219400003 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4  
  Call Number UA @ admin @ c:irua:191541 Serial 7223  
Permanent link to this record
 

 
Author Yagmurcukardes, N.; Bayram, A.; Aydin, H.; Yagmurcukardes, M.; Acikbas, Y.; Peeters, F.M.; Celebi, C. pdf  doi
openurl 
  Title Anisotropic etching of CVD grown graphene for ammonia sensing Type A1 Journal article
  Year 2022 Publication IEEE sensors journal Abbreviated Journal Ieee Sens J  
  Volume 22 Issue 5 Pages 3888-3895  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bare chemical vapor deposition (CVD) grown graphene (GRP) was anisotropically etched with various etching parameters. The morphological and structural characterizations were carried out by optical microscopy and the vibrational properties substrates were obtained by Raman spectroscopy. The ammonia adsorption and desorption behavior of graphene-based sensors were recorded via quartz crystal microbalance (QCM) measurements at room temperature. The etched samples for ambient NH3 exhibited nearly 35% improvement and showed high resistance to humidity molecules when compared to bare graphene. Besides exhibiting promising sensitivity to NH3 molecules, the etched graphene-based sensors were less affected by humidity. The experimental results were collaborated by Density Functional Theory (DFT) calculations and it was shown that while water molecules fragmented into H and O, NH3 interacts weakly with EGPR2 sample which reveals the enhanced sensing ability of EGPR2. Apparently, it would be more suitable to use EGRP2 in sensing applications due to its sensitivity to NH3 molecules, its stability, and its resistance to H2O molecules in humid ambient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766276000010 Publication Date 2022-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-437x; 1558-1748 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 2 Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 4.3  
  Call Number UA @ admin @ c:irua:187257 Serial 7126  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
  Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000898283500001 Publication Date 2022-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access OpenAccess  
  Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved (up) Most recent IF: 4.3  
  Call Number EMAT @ emat @c:irua:191646 Serial 7233  
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Meng, S.; Yi, Y.; Wang, Y.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A. url  doi
openurl 
  Title SF₆ catalytic degradation in a γ-Al₂O₃ packed bed plasma system : a combined experimental and theoretical study Type A1 Journal article
  Year 2022 Publication High voltage Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Effective abatement of the greenhouse gas sulphur hexafluoride (SF6) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of gamma-Al2O3 pellets on SF6 degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO2, while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF6 is likely to be adsorbed at the Al-III site over the gamma-Al2O3(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF6 degradation in a PB-DBD system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000827312700001 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7264 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.4  
  Call Number UA @ admin @ c:irua:189603 Serial 7208  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. url  doi
openurl 
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 157 Issue 18 Pages 184113-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885260600002 Publication Date 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.4  
  Call Number UA @ admin @ c:irua:192076 Serial 7266  
Permanent link to this record
 

 
Author Barich, H.; Cánovas, R.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
  Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem  
  Volume 904 Issue Pages 115878  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741151200005 Publication Date 2021-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.5  
  Call Number UA @ admin @ c:irua:184384 Serial 7150  
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M. url  doi
openurl 
  Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
  Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 14 Issue 18 Pages e202200754-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000853941300001 Publication Date 2022-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited 7 Open Access OpenAccess  
  Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved (up) Most recent IF: 4.5  
  Call Number UA @ admin @ c:irua:190703 Serial 7226  
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 14 Pages 5637-5652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789034200023 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access  
  Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188631 Serial 7079  
Permanent link to this record
 

 
Author Vanderveken, F.; Tyberkevych, V.; Talmelli, G.; Sorée, B.; Ciubotaru, F.; Adelmann, C. url  doi
openurl 
  Title Lumped circuit model for inductive antenna spin-wave transducers Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 12 Issue 1 Pages 3796-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We derive a lumped circuit model for inductive antenna spin-wave transducers in the vicinity of a ferromagnetic medium. The model considers the antenna's Ohmic resistance, its inductance, as well as the additional inductance due to the excitation of ferromagnetic resonance or spin waves in the ferromagnetic medium. As an example, the additional inductance is discussed for a wire antenna on top of a ferromagnetic waveguide, a structure that is characteristic for many magnonic devices and experiments. The model is used to assess the scaling properties and the energy efficiency of inductive antennas. Issues related to scaling antenna transducers to the nanoscale and possible solutions are also addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826474600050 Publication Date 2022-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190001 Serial 7180  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 12 Issue 1 Pages 15738-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract While the behaviour of plasmonic solid thin films in the Kretschmann (also known as Attenuated Total Reflection, ATR) configuration is well-understood, the use of discrete nanoparticle arrays in this optical configuration is not thoroughly explored. It is important to do so, since close packed plasmonic nanoparticle arrays exhibit exceptionally strong light-matter interactions by plasmonic coupling. The present work elucidates the optical properties of plasmonic Au and Ag nanoparticle arrays in both the direct normal incidence and Kretschmann configuration by numerical models, that are validated experimentally. First, hexagonal close packed Au and Ag nanoparticle films/arrays are obtained by air–liquid interfacial assembly. The numerical models for the rigorous solution of the Maxwell’s equations are validated using experimental optical spectra of these films before systematically investigating various parameters. The individual far-field/near-field optical properties, as well as the plasmon relaxation mechanism of the nanoparticles, vary strongly as the packing density of the array increases. In the Kretschmann configuration, the evanescent fields arising from p – and s -polarized (or TM and TE polarized) incidence have different directional components. The local evanescent field intensity and direction depends on the polarization, angle of incidence and the wavelength of incidence. These factors in the Kretschmann configuration give rise to interesting far-field as well as near-field optical properties. Overall, it is shown that plasmonic nanoparticle arrays in the Kretschmann configuration facilitate strong broadband absorptance without transmission losses, and strong near-field enhancement. The results reported herein elucidate the optical properties of self-assembled nanoparticle films, pinpointing the ideal conditions under which the normal and the Kretschmann configuration can be exploited in multiple light-driven applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000858344700048 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship (Grant FN541100001). Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190864 Serial 7194  
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J. url  doi
openurl 
  Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 31 Pages 10-12385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841943600001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190007 Serial 7215  
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J. url  doi
openurl 
  Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
  Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules  
  Volume 27 Issue 6 Pages 1997-21  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000776369800001 Publication Date 2022-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188053 Serial 7218  
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
  Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 18 Issue 3 Pages 034064-34069  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000870234200001 Publication Date 2022-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 2 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:191539 Serial 7307  
Permanent link to this record
 

 
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G. pdf  url
doi  openurl
  Title Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 177 Issue Pages 107304  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000850000900001 Publication Date 2022-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.8  
  Call Number UA @ admin @ c:irua:187493 Serial 7138  
Permanent link to this record
 

 
Author Fabri, C.; Moretti, M.; Van Passel, S. pdf  doi
openurl 
  Title On the (ir)relevance of heatwaves in climate change impacts on European agriculture Type A1 Journal article
  Year 2022 Publication Climatic Change Abbreviated Journal Climatic Change  
  Volume 174 Issue 1-2 Pages 16-20  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The Ricardian model is a widely used approach based on cross-sectional regression analysis to estimate climate change impacts on agricultural productivity. Up until now, researchers have focused on the impacts of gradual changes in temperature and precipitation, even though climate change is known to encompass also changes in the severity and frequency of extreme weather events. This research investigates the impact of heatwaves on European agriculture, additional to the impact of average climate change. Using a dataset of more than 60,000 European farms, the study examines whether adding a measure for heatwaves to the Ricardian model influences its results. We find that heatwaves have a minor impact on agricultural productivity and that this impact is moderated by average temperature. In colder regions, farm productivity increases with the number of heatwave days. For warmer regions, land values decrease with heatwave frequency. Despite the moderating effect, the marginal effect of heatwave frequency, i.e. the percentage change in agricultural land values caused by one more heatwave day per year, is small in comparison to the effect of average temperature increases. Non-marginal effects are found to be relevant, but only in the case of increased heatwave frequency. According to our results, farms are not expected to suffer more from extreme weather than from mean climate change, as was claimed by several previous studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861873100002 Publication Date 2022-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009; 1573-1480 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.8  
  Call Number UA @ admin @ c:irua:191483 Serial 7364  
Permanent link to this record
 

 
Author Naderi Mahdei, K.; Esfahani, S.M.J.; Lebailly, P.; Dogot, T.; Van Passel, S.; Azadi, H. pdf  doi
openurl 
  Title Environmental impact assessment and efficiency of cotton : the case of Northeast Iran Type A1 Journal article
  Year 2022 Publication Environment, development and sustainability Abbreviated Journal  
  Volume Issue Pages 1-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Cotton is one of the important crops that play an important role in creating a livelihood for rural people in many parts of Iran. Cotton production necessitates a large amount of resources (e.g., fossil energy and agrochemicals, all of which have the potential to damage the environment in various ways). The purpose of the current study was to evaluate the environmental effects of cotton production in the South Khorasan Province of Iran. For this purpose, life cycle assessment (LCA) and data envelopment analysis (DEA) techniques have been applied to investigate the environmental impacts of cotton production. LCA is a practical method to evaluate the environment on the product flow, in which all aspects of the product life cycle are examined by a comprehensive approach. Furthermore, combining the LCA method with other managerial strategies such as DEA could allow researchers to provide decision-makers with more practical and interpretable data. The findings of the efficiency test showed that the average technical efficiency, pure technical efficiency, and scale efficiency were 0.81, 0.92, and 0.87, respectively. Respiratory inorganics (i.e., respiratory effects resulting from winter smog caused by emissions of dust, sulfur, and nitrogen oxides to air) posed the greatest environmental burden in cotton production, followed by non-renewable energy, carcinogens, and global warming. In addition, the highest effects were on human health, and then, on resources and climate change. Energy, on-system pollution, and waste played a crucial role in the environmental impacts of cotton processing. This study suggests improving farmers' knowledge toward the optimum application of chemical fertilizers, or their substitution with green fertilizers, which reduces the environmental effect of growing cotton in the area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826851400001 Publication Date 2022-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x; 1573-2975 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:189630 Serial 7356  
Permanent link to this record
 

 
Author Zhang, Y.; Sahoo, P.K.; Ren, P.; Qin, Y.; Cauwenbergh, R.; Nimmegeers, P.; Gandhi, S.R.; Van Passel, S.; Guidetti, A.; Das, S. url  doi
openurl 
  Title Transition metal-free approach for the late-stage benzylic C(sp3)-H etherifications and esterifications Type A1 Journal article
  Year 2022 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 58 Issue 81 Pages 11454-11457  
  Keywords A1 Journal article; Engineering Management (ENM); Organic synthesis (ORSY); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Herein, we report a transition metal-free approach for the regioselective functionalisation of benzylic C(sp3)-H bonds using alcohols and carboxylic acids as the nucleophiles. This approach provides a straightforward route for the synthesis of various benzylic ethers and esters to provide a wide generality of this system. Expediently, twelve pharmaceutically relevant compounds have been synthesized using this strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000857171200001 Publication Date 2022-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:190191 Serial 7372  
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V. url  doi
openurl 
  Title Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
  Year 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys  
  Volume 94 Issue 3 Pages 035005-35061  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861559900001 Publication Date 2022-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 44.1 Times cited 12 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 44.1  
  Call Number UA @ admin @ c:irua:191507 Serial 7339  
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F. url  doi
openurl 
  Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
  Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol  
  Volume 12 Issue 22 Pages 6676-6686  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865542600001 Publication Date 2022-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 5  
  Call Number UA @ admin @ c:irua:191389 Serial 7185  
Permanent link to this record
 

 
Author Spacova, I.; Ahannach, S.; Breynaert, A.; Erreygers, I.; Wittouck, S.; Bron, P.A.; Van Beeck, W.; Eilers, T.; Alloul, A.; Blansaer, N.; Vlaeminck, S.E.; Hermans, N.; Lebeer, S. url  doi
openurl 
  Title Spontaneous riboflavin-overproducing Limosilactobacillus reuteri for biofortification of fermented foods Type A1 Journal article
  Year 2022 Publication Frontiers in Nutrition Abbreviated Journal  
  Volume 9 Issue Pages 916607-916619  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Riboflavin-producing lactic acid bacteria represent a promising and cost-effective strategy for food biofortification, but production levels are typically insufficient to support daily human requirements. In this study, we describe the novel human isolate Limosilactobacillus reuteri AMBV339 as a strong food biofortification candidate. This strain shows a high natural riboflavin (vitamin B2) overproduction of 18.36 mu g/ml, biomass production up to 6 x 10(10) colony-forming units/ml (in the typical range of model lactobacilli), and pH-lowering capacities to a pH as low as 4.03 in common plant-based (coconut, soy, and oat) and cow milk beverages when cultured up to 72 h at 37 degrees C. These properties were especially pronounced in coconut beverage and butter milk fermentations, and were sustained in co-culture with the model starter Streptococcus thermophilus. Furthermore, L. reuteri AMBV339 grown in laboratory media or in a coconut beverage survived in gastric juice and in a simulated gastrointestinal dialysis model with colon phase (GIDM-colon system) inoculated with fecal material from a healthy volunteer. Passive transport of L. reuteri AMBV339-produced riboflavin occurred in the small intestinal and colon stage of the GIDM system, and active transport via intestinal epithelial Caco-2 monolayers was also demonstrated. L. reuteri AMBV339 did not cause fecal microbiome perturbations in the GIDM-colon system and inhibited enteric bacterial pathogens in vitro. Taken together, our data suggests that L. reuteri AMBV339 represents a promising candidate to provide riboflavin fortification of plant-based and dairy foods, and has a high application potential in the human gastrointestinal tract.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000814856600001 Publication Date 2022-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-861x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 5  
  Call Number UA @ admin @ c:irua:189011 Serial 7211  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages 128521  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U. url  doi
openurl 
  Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
  Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1516 Issue 1 Pages 123-134  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000829772300001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:189314 Serial 7131  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title Comparison of a universal (but complex) model for avian egg shape with a simpler model Type Editorial
  Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1514 Issue 1 Pages 34-42  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Recently, a universal equation by Narushin, Romanov, and Griffin (hereafter, the NRGE) was proposed to describe the shape of avian eggs. While NRGE can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs, its predictions were not tested against actual data. Here, we tested the validity of the NRGE by fitting actual data of egg shapes and compared this with the predictions of our simpler model for egg shape (hereafter, the SGE). The eggs of nine bird species were sampled for this purpose. NRGE was found to fit the empirical data of egg shape well, but it did not define the egg length axis (i.e., the rotational symmetric axis), which significantly affected the prediction accuracy. The egg length axis under the NRGE is defined as the maximum distance between two points on the scanned perimeter of the egg's shape. In contrast, the SGE fitted the empirical data better, and had a smaller root-mean-square error than the NRGE for each of the nine eggs. Based on its mathematical simplicity and goodness-of-fit, the SGE appears to be a reliable and useful model for describing egg shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000803394100001 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:188470 Serial 7139  
Permanent link to this record
 

 
Author Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J. doi  openurl
  Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue 13 Pages 2269-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000824547500001 Publication Date 2022-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:189591 Serial 7098  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: