toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chaves, A.; Covaci, L.; Rakhimov, K.Y.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Wave-packet dynamics and valley filter in strained graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 20 Pages 205430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The time evolution of a wave packet in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudomagnetic field, on the wave-packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284401600007 Publication Date 2010-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 95 Open Access  
  Notes ; This work was financially supported by CNPq under NanoBioEstruturas Contract No. 555183/2005-0, PRONEX/CNPq/FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1) ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95542 Serial 3905  
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Van Duppen, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene : an analytical and computational approach Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 9 Pages 095503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599465000001 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 3 Open Access OpenAccess  
  Notes ; Discussions with D J P de Sousa and J M Pereira Jr are gratefully acknowledged. This work was financially supported by the Brazilian Council for Research (CNPq), under the PQ and PRONEX/FUNCAP programs, and by CAPES. One of us (BVD) is supported by the FWO-Vl. DRC is supported by CNPq Grant Nos. 310019/2018-4 and 437067/2018-1. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:174953 Serial 6687  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 24 Pages 245429-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328686900006 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:113700 Serial 3635  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. doi  openurl
  Title Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue 23 Pages 233109,1-233109,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ∼ 0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285364000067 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 43 Open Access  
  Notes ; The financial supports by the Vice-Chancellor's Postdoctoral Research Fellowship Program of the University of New South Wales (SIR50/PS19184), the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP) are acknowledged. A.D.H. acknowledges also support from ANPCyT (Grant No. PICT2008-2236) and the collaborative project FWO-MINCyT (FW/08/01). ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:86972 Serial 1056  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 6 Pages 064501,1-064501,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the intermediate state of type-I superconductors. Even the subtle changes in the fluxoid distribution inside the sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples whose interior is often inaccessible by magnetometry. The heat-capacity jump ΔC(H) at the critical temperature exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings, these oscillations provide calorimetric verification of the Little-Parks effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998100091 Publication Date 2010-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We are grateful to O. Bourgeois for useful discussions. This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles (IAP) Program-Belgian State-Belgian Science Policy, ESF-JSPS NES program and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81766 Serial 271  
Permanent link to this record
 

 
Author Ferreira, W.P.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Melting and evaporation in classical two-dimensional clusters confined by a Coulomb potential Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 72 Issue 4 Part 1 Pages 041502-41507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The thermal properties of a two-dimensional classical cluster of negatively charged particles bound by a punctual positive charge are presented. The melting phenomenon is analyzed and the features which characterize such a solid-liquid transition are highlighted. We found that the presence of metastable states strongly modifies the melting scenario, and that the melting temperature of the system is determined by the height of the saddle point energy separating the ground state and the metastable state. Due to the particular type of confinement potential considered in this paper, we also found that, at sufficiently large temperature, the cluster can become thermally ionized.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000232930600030 Publication Date 2005-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:104067 Serial 1983  
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M. pdf  doi
openurl 
  Title Theory of thermal expansion in 2D crystals Type A1 Journal article
  Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 252 Issue 252 Pages 2433-2437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000364690400014 Publication Date 2015-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 21 Open Access  
  Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved Most recent IF: 1.674; 2015 IF: 1.489  
  Call Number UA @ lucian @ c:irua:130281 Serial 4264  
Permanent link to this record
 

 
Author Bulut, P.; Beceren, B.; Yildirim, S.; Sevik, C.; Gurel, T. doi  openurl
  Title Promising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 1 Pages 015501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The theoretical investigation on structural, vibrational, and electronic properties of zinc-blende (ZB) AgI were carried out employing first principles density functional theory calculations. Thermoelectric properties then were predicted through semi-classical Boltzmann transport equations within the constant relaxation time approximation. Equilibrium lattice parameter, bulk modulus, elastic constants, and vibrational properties were calculated by using generalized gradient approximation. Calculated properties are in good agreement with available experimental values. Electronic and thermoelectric properties were investigated both with and without considering spin-orbit coupling (SOC) effect which is found to have a strong influence on p-type Seebeck coefficient as well as the power factor of the ZB-AgI. By inclusion of SOC, a reduction of the band-gap and p-type Seebeck coefficients as well as the power factor was found which is the indication of that spin-orbit interaction cannot be ignored for p-type thermoelectric properties of the ZB-AgI. By using deformation potential theory for electronic relaxation time and experimentally predicted lattice thermal conductivity, we obtained aZTvalue 1.69 (0.89) at 400 K for n-type (p-type) carrier concentration of 1.5 x 10(18)(4.6 x10(19)) cm(-3)that makes ZB-AgI as a promising room temperature thermoelectric material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577217600001 Publication Date 2020-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.649 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:193762 Serial 8425  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. pdf  doi
openurl 
  Title Magneto conductance for tunnelling through double magnetic barriers Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 25 Issue 4 Pages 339-346  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) The temperature-dependent magnetoresistance effect is investigated in a magnetically modulated two-dimensional (21)) electron gas (2DEG) which can be realized by depositing two parallel ferromagnets on top of a 2DEG electron gas. In the resonant tunnelling regime the transmission for the parallel and antiparallel magnetization configurations shows a quite distinct dependence on the longitudinal wave vector of the incident electrons. This leads to a very large magneto resistance ratio with a strong temperature dependence. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000226187900002 Publication Date 2004-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:99308 Serial 1898  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. pdf  doi
openurl 
  Title Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers Type A1 Journal article
  Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 16 Issue 46 Pages 8275-8283  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The temperature-dependent giant magnetoresistance effect is investigated in a magnetically modulated two-dimensional electron gas, which can be realized by depositing two parallel ferromagnets on the top and bottom of a heterostructure. The effective potential for electrons arising for parallel magnetization allows the electrons to resonantly tunnel through the magnetic barriers, while this is excluded in the anti-parallel situation. Such a discrepancy results in a giant magnetoresistance ratio (MRR), which can be up to 10(31)%. The MRR shows a strong dependence on temperature, but our study indicates that for realistic parameters for a GaAs heterostructure the effect can be as high as 10(4)% at 4 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000225706000017 Publication Date 2004-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 69 Open Access  
  Notes Approved Most recent IF: 2.649; 2004 IF: 2.049  
  Call Number UA @ lucian @ c:irua:103718 Serial 1338  
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N. pdf  doi
openurl 
  Title Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
  Year 2017 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc  
  Volume 100 Issue 100 Pages 1508-1516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Columbus, Ohio Editor  
  Language Wos 000399610800034 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.841 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 2.841  
  Call Number UA @ lucian @ c:irua:143682 Serial 4597  
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M. url  doi
openurl 
  Title Application of optical beams to electrons in graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115458-115458,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288896400013 Publication Date 2011-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89377 Serial 142  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 15 Open Access  
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Ab initio approach to superexchange interactions in alkali doped fullerides AC60 Type P1 Proceeding
  Year 2004 Publication AIP conference proceedings T2 – 18th International Winterschool/Euroconference on Electronic Properties, of Novel Materials, MAR 06-JUN 13, 2004, Kirchberg, AUSTRIA Abbreviated Journal  
  Volume Issue Pages 393-396  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract (down) The superexchange interactions between the fullerenes arise as a result of the electron transfer from the C-60 molecule to the alkali atom and back. We present a scheme, which is a configuration interaction approach based on the valence bond (Heitler-London) method. The effect of superexchange is described together with chemical bonding by constructing and solving a secular equation, rather than by using a perturbation treatment. We have considered 180degrees and 90degrees superexchange for the C-60 Cs-C-60 pathways. The calculations account for unusual electronic properties of polymer orthorhombic and quenched cubic phases of CsC60: two lines in nuclear magnetic resonance experiments, the development of a spin-singlet ground state and a decrease of magnetic susceptibility as T-->0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000224699400085 Publication Date 2004-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 723 Series Issue Edition  
  ISSN 0-7354-0204-3 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103752 Serial 27  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.; Schweigert, V.A. url  doi
openurl 
  Title Vortex states in superconducting rings Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 61 Issue 14 Pages 9734-9747  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The superconducting state. of a thin superconducting disk with a hole is studied within the, nonlinear Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole for fixed radius of the disk, and a transition to a multivortex state is found if the disk is sufficiently large. Breaking the circular symmetry through a non-central-location of the hole in the disk favors the multivortex state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000086441800074 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access  
  Notes Approved Most recent IF: 3.836; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:28514 Serial 3892  
Permanent link to this record
 

 
Author Baelus, B.J.; Yampolskii, S.V.; Peeters, F.M.; Montevecchi, E.; Indekeu, J.O. url  doi
openurl 
  Title Superconducting properties of mesoscopic cylinders with enhanced surface superconductivity Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 2 Pages 024510-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The superconducting state of an infinitely long superconducting cylinder surrounded by a medium which enhances its superconductivity near the boundary is studied within the nonlinear Ginzburg-Landau theory. This enhancement can be due to the proximity of another superconductor or due to surface treatment. Quantities such as the free energy, the magnetization and the Cooper-pair density are calculated. Phase diagrams are obtained to investigate how the critical field and the critical temperature depend on this surface enhancement for different values of the Ginzburg-Landau parameter kappa. Increasing the superconductivity near the surface leads to higher critical fields and critical temperatures. For small cylinder diameters only giant vortex states nucleate, while for larger cylinders multivortices can nucleate. The stability of these multivortex states also depends on the surface enhancement. For type-I superconductors we found the remarkable result that for a range of values of the surface extrapolation length the superconductor can transit from the Meissner state into superconducting states with vorticity L > 1. Such a behavior is not found for the case of large kappa, i.e., type-II superconductivity,  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000173213100099 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:103890 Serial 3363  
Permanent link to this record
 

 
Author Buh, J.; Kabanov, V.; Baranov, V.; Mrzel, A.; Kovic, A.; Mihailovic, D. url  doi
openurl 
  Title Control of switching between metastable superconducting states in delta-MoN nanowires Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue 6 Pages 10250  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in d-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367576600002 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number UA @ lucian @ c:irua:131108 Serial 4156  
Permanent link to this record
 

 
Author Bekaert, J. pdf  doi
openurl 
  Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 13 Pages 134504-134507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140080300003 Publication Date 2023-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201445 Serial 9071  
Permanent link to this record
 

 
Author Sun, J.; Li, Y.; Karaaslan, Y.; Sevik, C.; Chen, Y. doi  openurl
  Title Misfit dislocation structure and thermal boundary conductance of GaN/AlN interfaces Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 3 Pages 035301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structure and thermal boundary conductance of the wurtzite GaN/AlN (0001) interface are investigated using molecular dynamics simulation. Simulation results with three different empirical interatomic potentials have produced similar misfit dislocation networks and dislocation core structures. Specifically, the misfit dislocation network at the GaN/AlN interface is found to consist of pure edge dislocations with a Burgers vector of 1/3(1 (2) over bar 10) and the misfit dislocation core has an eight-atom ring structure. Although different interatomic potentials lead to different dislocation properties and thermal conductance values, all have demonstrated a significant effect of misfit dislocations on the thermal boundary conductance of the GaN/AlN (0001) interface. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694725800001 Publication Date 2021-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:181623 Serial 8254  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Singh, S.K.; Peeters, F.M. doi  openurl
  Title Stable half-metallic monolayers of FeCl2 Type A1 Journal article
  Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 106 Issue 106 Pages 192404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural, electronic, and magnetic properties of single layers of Iron Dichloride (FeCl2) were calculated using first principles calculations. We found that the 1T phase of the single layer FeCl2 is 0.17 eV/unit cell more favorable than its 1H phase. The structural stability is confirmed by phonon calculations. We found that 1T-FeCl2 possess three Raman-active (130, 179, and 237 cm(-1)) and one infrared-active (279 cm(-1)) phonon branches. The electronic band dispersion of the 1T-FeCl2 is calculated using both gradient approximation of Perdew-Burke-Ernzerhof and DFT-HSE06 functionals. Both functionals reveal that the 1T-FeCl2 has a half-metallic ground state with a Curie temperature of 17 K. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000355008100020 Publication Date 2015-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 84 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.411; 2015 IF: 3.302  
  Call Number c:irua:126411 Serial 3143  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Vacancy formation and oxidation characteristics of single layer TiS3 Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 10709-10715  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) The structural, electronic, and magnetic properties of pristine, defective, and oxidized monolayer TiS3 are investigated using first-principles calculations in the framework of density functional theory. We found that a single layer of TiS3 is a direct band gap semiconductor, and the bonding nature of the crystal is fundamentally different from other transition metal chalcogenides. The negatively charged surfaces of single layer TiS3 makes this crystal a promising material for lubrication applications. The formation energies of possible vacancies, i.e. S, Ti, TiS, and double S, are investigated via total energy optimization calculations. We found that the formation of a single S vacancy was the most likely one among the considered vacancy types. While a single S vacancy results in a nonmagnetic, semiconducting character with an enhanced band gap, other vacancy types induce metallic behavior with spin polarization of 0.3-0.8 mu(B). The reactivity of pristine and defective TiS3 crystals against oxidation was investigated using conjugate gradient calculations where we considered the interaction with atomic O, O-2, and O-3. While O-2 has the lowest binding energy with 0.05-0.07 eV, O-3 forms strong bonds stable even at moderate temperatures. The strong interaction (3.9-4.0 eV) between atomic O and TiS3 results in dissociative adsorption of some O-containing molecules. In addition, the presence of S-vacancies enhances the reactivity of the surface with atomic O, whereas it had a negative effect on the reactivity with O-2 and O-3 molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200063 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. RI., H.S., and R.T.S. acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126410 Serial 3829  
Permanent link to this record
 

 
Author Galvan-Moya; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Chainlike transitions in Wigner crystals : sequential versus nonsequential Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 064112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural transitions of the ground state of a system of repulsively interacting particles confined in a quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions (non-SOT), i.e., the 1 – 2 – 4 – 3 – 4 – 5 – 6 – ... sequence of chain configurations with increasing density, is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e., the 1 – 2 – 3 – 4 – 5 – 6 – ... chain, is found as the ground state for long-ranged interparticle interaction and hard-wall-like confinement potentials. We found an energy barrier between every two different phases around its transition point, which plays an important role in the preference of the system to follow either a SOT or a non-SOT. However, that preferential transition requires also the stability of the phases during the transition. Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around its transition point. Our results show that a small deformation of the triangular structure changes dramatically the picture of the transition between two phases, removing in a considerable region the non-SOT in the system. This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and suggests a more advanced experimental setup to detect the non-SOT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000359859400003 Publication Date 2015-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127753 Serial 4148  
Permanent link to this record
 

 
Author Sar, H.; Ozden, A.; Demiroglu, I.; Sevik, C.; Perkgoz, N.K.; Ay, F. doi  openurl
  Title Long-Term Stability Control of CVD-Grown Monolayer MoS2 Type A1 Journal article
  Year 2019 Publication Physica status solidi: rapid research letters Abbreviated Journal  
  Volume 13 Issue 7 Pages 1800687  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural stability of 2D transition metal dichalcogenide (TMD) formations is of particular importance for their reliable device performance in nano-electronics and opto-electronics. Recent observations show that the CVD-grown TMD monolayers are likely to encounter stability problems such as cracking or fracturing when they are kept under ambient conditions. Here, two different growth configurations are investigated and a favorable growth geometry is proposed, which also sheds light onto the growth mechanism and provides a solution for the stability and fracture formation issues for TMDs specifically for MoS2 monolayers. It is shown that 18 months naturally and thermally aged MoS2 monolayer flakes grown using specifically developed conditions, retain their stability. To understand the mechanism of the structural deterioration, two possible effective mechanisms, S vacancy defects and growth-induced tensile stress, are assessed by the first principle calculations where the role of S vacancy defects in obtaining oxidation resistant MoS2 monolayer flakes is revealed to be rather more critical. Hence, these simulations, time-dependent observations and thermal aging experiments show that durability and stability of 2D MoS2 flakes can be controlled by CVD growth configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477671800009 Publication Date 2019-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193784 Serial 8184  
Permanent link to this record
 

 
Author Neek-Amal, M; Peeters, F.M. url  doi
openurl 
  Title Partially hydrogenated and fluorinated graphene : structure, roughness, and negative thermal expansion Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 155430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural properties of partially hydrogenated and fluorinated graphene with different percentages of H/F atoms are investigated using molecular dynamics simulations based on reactive force field (ReaxFF) potentials. We found that the roughness of graphene varies with the percentage (p) of H or F and in both cases is maximal around p = 50%. Similar results were obtained for partially oxidized graphene. The two-dimensional area size of partially fluorinated and hydrogenated graphene exhibits a local minimum around p = 35% coverage. The lattice thermal contraction in partially functionalized graphene is found to be one order of magnitude larger than that of fully covered graphene. We also show that the armchair structure for graphene oxide (similar to the structure of fully hydrogenated and fluorinated graphene) is unstable. Our results show that the structure of partially functionalized graphene changes nontrivially with the C : H and C : F ratio as well as with temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000363294100005 Publication Date 2015-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:129448 Serial 4221  
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.; Zeng, Z.; Peeters, F.M. url  doi
openurl 
  Title Structure of binary colloidal systems confined in a quasi-one-dimensional channel Type A1 Journal article
  Year 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 79 Issue 4 Pages 041406,1-041406,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265941300077 Publication Date 2009-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.366; 2009 IF: 2.400  
  Call Number UA @ lucian @ c:irua:77021 Serial 3308  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. url  doi
openurl 
  Title Symmetry lowering at the structural phase transitions in NpO2 and UO2 Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 68 Issue 5 Pages 054112-054112,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural phase transitions with electric-quadrupole long-range order in NpO2 (Fm (3) over barm-->Pn (3) over barm) and UO2 (Fm (3) over barm-->Pa (3) over bar) are analyzed from a group theoretical point of view. In both cases, the symmetry lowering involves three quadrupolar components belonging to the irreducible representation T-2g (Gamma(5)) of O-h and condensing in a triple-q structure at the X point of the Brillouin zone. The Pa (3) over bar structure is close to Pn (3) over barm, but allows for oxygen displacements. The Pa (3) over bar ordering leads to an effective electrostatic attraction between electronic quadrupoles while the Pn (3) over barm ordering results in a repulsion between them. It is concluded that the Pn (3) over barm structure can be stabilized only through some additional process such as strengthening of the chemical bonding between Np and O. We also derive the relevant structure-factor amplitudes for Pn (3) over barm and Pa (3) over bar, and the effect of domains on resonant x-ray scattering experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000185240100038 Publication Date 2003-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:94847 Serial 3405  
Permanent link to this record
 

 
Author Piacente, G.; Schweigert, I.V.; Betouras, J.J.; Peeters, F.M. pdf  doi
openurl 
  Title Structural properties and melting of a quasi-one dimensional classical Wigner crystal Type A1 Journal article
  Year 2003 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 128 Issue 2-3 Pages 57-61  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural and melting properties of a quasi-one dimensional system of charged particles, interacting through a screened Coulomb potential are investigated. Depending on the density and the screening length, the system crystallizes in different lattice structures. The structural phase transitions between them are of first or second order. The melting of the system is studied through Monte Carlo simulations and reentrant behavior as a function of density is observed as well as evidence of anisotropic melting. (C) 2003 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000185533100004 Publication Date 2003-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.554; 2003 IF: 1.602  
  Call Number UA @ lucian @ c:irua:102790 Serial 3253  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title N-doped graphene : polarization effects and structural properties Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The structural and mechanical properties of N-doped graphene (NG) are investigated using reactive force field (ReaxFF) potentials in large-scale molecular dynamics simulations. We found that ripples, which are induced by the dopants, change the roughness of NG, which depends on the number of dopants and their local arrangement. For any doping ratio N/C, the NG becomes ferroelectric with a net dipole moment. The formation energy increases nonlinearly with N/C ratio, while the Young's modulus, tensile strength, and intrinsic strain decrease with the number of dopants. Our results for the structural deformation and the thermoelectricity of the NG sheet are in good agreement with recent experiments and ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376245900002 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134148 Serial 4212  
Permanent link to this record
 

 
Author Földi, P.; Benedict, M.G.; Kalman, O.; Peeters, F.M. url  doi
openurl 
  Title Quantum rings with time-dependent spin-orbit coupling: Spintronic Rabi oscillations and conductance properties Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 16 Pages 165303,1-165303,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength in time as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivalsthat are typical in nonlinear systemsare shown to correspond to superpositions of states localized at different spatial positions along the ring. These spintronic Schrödinger-cat states appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to disturbances caused by the environment. The time-dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the sideband currents induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271352100078 Publication Date 2009-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80002 Serial 2784  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Strain-engineered graphene through a nanostructured substrate : 2 : pseudomagnetic fields Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195446-195446,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The strain-induced pseudomagnetic field in supported graphene deposited on top of a nanostructured substrate is investigated by using atomistic simulations. A step, an elongated trench, a one-dimensional barrier, a spherical bubble, a Gaussian bump, and a Gaussian depression are considered as support structures for graphene. From the obtained optimum configurations we found very strong induced pseudomagnetic fields which can reach up to similar to 1000 T due to the strain-induced deformations in the supported graphene. Different magnetic confinements with controllable geometries are found by tuning the pattern of the substrate. The resulting induced magnetic fields for graphene on top of a step, barrier, and trench are calculated. In contrast to the step and trench the middle part of graphene on top of a barrier has zero pseudomagnetic field. This study provides a theoretical background for designing magnetic structures in graphene by nanostructuring substrates. We found that altering the radial symmetry of the deformation changes the sixfold symmetry of the induced pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304394800013 Publication Date 2012-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF EUROCORE program EuroGRAPHENE: CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98943 Serial 3167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: