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The structural phase transitions with electric-quadrupole long-range order in (‘Fp@?m—mn?m) and
uo, (Fm?m—>Pa§) are analyzed from a group theoretical point of view. In both cases, the symmetry
lowering involves three quadrupolar components belonging to the irreducible represeifitgtidns) of Oy,
and condensing in a triplg-structure at the point of the Brillouin zone. Th&a3 structure is close t&n3m,
but allows for oxygen displacements. Tﬁeﬁordering leads to an effective electrostatic attraction between
electronic quadrupoles while tHen3m ordering results in a repulsion between them. It is concluded that the
Pn3m structure can be stabilized only through some additional process such as strengthening of the chemical
bonding between Np and O. We also derive the relevant structure-factor amplitudes3or and Pa3, and
the effect of domains on resonant x-ray scattering experiments.
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[. INTRODUCTION of breaking down of Kramers’ degeneracy by the magnetic
gctupole seems to be the only solution in the framework of
fhe 53 model®*3

An important progress in elucidating the puzzling nature
aﬂt the phase transition in NpQwvas provided by recent reso-
nant x-ray scatteringRXS) experiment¥* at the NpM,, and
M, absorption edges. While earlier RXS experimémisre

Since the discovery by specific-heat measurements half
century ago of a phase transition in NpQat a temperature
T,=25.5 K, the nature of this transition in relation with
magnetic and structural properties has represented a ch
lenge for theory and experimeht.Both NpQ, and its neigh-
bor UG, (Ref. 4,5 in the actinide series have crystalline _ o }
phases with cubic fluorite (CaFstructure at temperaturds ~ Intérpreted in terms of an unusual trigemagnetic struc-
aboveT, andTy, respectively. The temperature dependencdU'®: it later became clear by polarization analysis of the
of the magnetic susceptibility in both compounds abaye diffraction radiation that the superlattice peaks in NpDe
andT, is suggestive for a N transition to an antiferromag- not magnetic but signal the occurrence of electric quadrupole

netic staté:* However, while it was found that UQbrders in  long-range order with space-group symme#p3m below

a transverse triplg- antiferromagnetic structure afy  To. It was pointed out in Ref. 13 that quadrupolar order

=30.8 K with 1.74.5/U atom? no such magnetic order was alone is not sufficient as it cannot explain the absence of a

detected® for NpO, at T,,. disordered magnetic moment and the breaking of invariance
The structural properties of UQand NpQ are also dif- under time-reversal. The breaking of time reversal symmetry

ferent. From neutron-diffraction experimefitaje know that below T, is demonstrated by muon spin-relaxation

the phase transition in UQOis accompanied by an internal experiments® Hence, the authors of Ref. 14 infer the exis-

distortion of the oxygen cube that surrounds the U cationtence of an octupolar magnetic order paranté@pP) which

while the external cubic structure of uranium ions survivestransforms as the irreducible representatign(T,,) of Oy,.

the transition. The picture of oxygen displacements is a comk is suggestetf that this octupolar OP induces the observed

plex triple-q structure, which fits th@a3 space symmetry. It triple-q structure ofl's (T24) quadrupoles as secondary OP.
is characterized by magnetic moments and oxygen displacave observe that the relation between electric quadrupolar
ments along the fouf111) directions. order and accompanying structural phase transitions with lat-
On the other hand, no evidence for an internal or externalice deformations and change of magnetic properties is a
crystallographic distortion in Np©Ohas been found by syn- problem of current research. In particular, it has been
chrotron experiment$.Thus, the phase transition in NpO  suggestetf that they-« transitiort® in Ce is driven by elec-
appears to be isostructural like the phase transition in  tric quadrupolar ordering witiPa3 symmetry. The experi-
elemental ceriurt?"** (T,~100 K) or the isostructural ex- mental verification of this hypothesis is still open.
pansion in YbInCy at T=42 K21t is worth mentioning In the present paper, we will investigate from a group
that in all these compounds, the phase transition is accompgheoretical point of view the electric quadrupole-quadrupole
nied by a loss of magnetic moments in the ordered phase. jnteractions on a fcc lattice. We will discuss the order param-
To describe the disappearance of magnetic moments @fter and condensation schemes that lead toRB8 and
Np atT<T,, Santini and Amoretti put forward the idea of a Pn3m structures, and study the corresponding quadrupolar
magnetic octupole order parametgryvhich on one hand, is interaction energies. Since the space groap8 andPn3m
not invariant under time-reversal symmetry and, on the otheare variants of triple* ordering and since both symmetries
hand, is different from the magnetic dipolar order parameteare very similar, we will give a detailed discussion of the
which brings about the ordinary magnetic ordering. The ideaorresponding RXS scattering laws and domain structures.
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Il. STRUCTURAL PHASE TRANSITIONS
AND SYMMETRY LOWERING

The crystal structure in the high-phases T>T, and T
>Ty, respectively has the cubic space grodgm3m and
the site point group i©y,. The electron-density distribution
of Np or U ions on the face-centered-cubic lattice has full

cubic symmetry. Deviations from spherical symmetry are de-

scribed by the cubic harmonicK;(Q2), Q=(0,¢), |

=46, ....[HereQ stands for the polar angle®)(¢).] The
cubic harmonics have the unit symmet#y;() of Oy,. There
is no contribution from quadrupolar function§_,, where
a=(m,c) or (m,s):

1
Yfm’c)(Q)ZE[Y{n(QHYf " (21a

2

Here and in the following, we work with real spherical har-

Y(m9(Q) Y=Y "] (2.1b
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Pa3

Pn3m

FIG. 1. Pn3m (NpG,) and Pa§(U02) quadrupolar orderings.

Both structures have the comm8g (or§) local site symmetry and
belong to the rhombohedrdtrigonal) system. They differ in the
way the threefold axes and quadrupoles are distributed over four

sublatticegn,}, p=1-4 (see text for details The Pn3m structure
possesses three mirror planes one of wiiiohis shown explicitly.

The Pa?symmetry corresponds to domain |.

monics and convention of Ref. 17. On the other hand, thd? the crystal fixed Cartesian system of axes. The spherical

symmetry lowering Fm3m—Pa3 for UO, at Ty and
Fm3m— Pn3m for NpGQ, at T, is characterized by the ap-
pearance of triplei antiferroquadrupolar order in the elec-
tronic density distribution at the actinide sites on the fcc
lattice.

In real space, both space groupa3 (No. 224, Ref. 18
and Pn3m (No. 205, Ref. 18 are characterized by the dis-
tribution of quadrupoles with specific orientations over four
different sublattices with simple cubic structure. We label
these sublattices which contain the site,0,0

(a/2)(0,1,1), @/2)(1,0,1), and &2)(1,1,0) by {ﬁp},

p=1-4, respectively. The most significant feature of the

harmonicsY2®, Y3°, Y5° belong to a three-dimensional irre-
ducible representatiofi,y of O,. They are proportional to
the Cartesian componentg, zx, andxy. We now distribute
the four orientational function§,—Sy among the distinct

sublattices{ﬁp}, p=1-4. Keeping the threefold rotation
symmetry about thE111] axis andS, for the first sublattice,
we distinguish only three different choices here. The first is

when (i) S, corresponds tdn,}, S.—{n,}, andSy—{ns}.
This gives theP n3m structure, Fig. 1 left panel. The nep-
tunium site symmetry i®34. Another assignment i§i) S,
—{n,}, S;—{ns}, andSy—{n,}. This scheme corresponds
to the Pa3 structure as shown in Fig. 1, right panel. The

ordered phases is the existence of only one threefold axis dhird choice is(iii) S,—{na}, S;—{n4}, andSy—{n,}. This

symmetryC; at each actinide site which is also a cube diag-

is simply another variantor domain of the Pa3 structure.

onal. The only quadrupole function compatible with the sym-The uranium site symmetry iSg=C3Xi.

metry lowering isYg(Q’) in the coordinate system where
the z' axis coincides with one of the threefold ax@sibe
diagonal$: [111], [-1,-1,1], [1,—-1,-1], and [—1,1,

From the mathematical point of view, we are analyzing
the symmetry lowering and the condensation schemes at the
X point of the Brillouin zoneg(BZ) of the fcc lattice, which

—1]. Consequently, there are four such functions which arénvolves the de_nsity components of tlg, symmetry. In

given by

1 1s 1c 2s

Sa(Q2)= —\/§[Y2 (D) +Y3 () +Y5(Q)],  (2.23
1 1s 1c 2s

Sp(Q2) = —ﬁ[—Yz (Q)=Yz(Q)+Y37(Q)], (2.2b
1 1s 1c 2s

Sc(Q)= _\/§[Y2 (Q)=Y27(Q)=-Yz ()], (2.29
1 1s 1c 2s

Sa(Q)=—=[-Y(Q)+ Y37 (D)~ Y(Q)] (2.20

V3

both cases Rn3m and Pa3), the tripleq mode which
drives the structural phase transition belongs toXhgoint

of BZ *ﬁx, and involves the three arms of the latter,
qx=(2mla)(1,0,0), q;=(2m/a)(0,1,0), and qy=(2m/
a)(0,0,1). To describe the three quadrupolar components
S,=Y3%, S,=V3¢, S;=Y2% at siten, we introduce the func-
tionsSi(ﬁ)(i =1-3) and consider their Fourier transforms:

- 1 TN
S(a)=-—= > X5 (n), 23
IN T

where the position vectoX runs overN sites of the face-
centered-cubic neptunium lattice. The little group*af® is

Dn (4/mmny. At g the functionsS, andS; belong to the
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E4 small representation, while the functi& belongs to the z
B,y small representation. Consequently, we distinguish two
different irreducible representations of the space group

Fm3m. The first oneX. in notations of Stokes and Haté,
comprises six orientational functions, with two functions

from every arm of* g*. The functions aré,(qY), Ss(q));
Si(A)), Sa(a)); Su(aY), andSy(q)). The second irreduc-
ible representatioiX; has only three components, with one
function from each arm ofg*, namely,S;(ay), Sx(q}).

andS3((i§<). For the symmetry lowering to thiea3 structure
we obtain the following condensation scheme:

Fm3m: X3 ((S5(4)) = (S1(a)) =(Sx(a)) = p1yN#0,

<Sz(af<()> = <Ss(6§()> = <51(a;()> =0) FIG. 2. Oxygen displacements of Y@ the Pa3 structure.

—Pa3(z=4) domain |. (2.4 ment along thg111) direction, these are oxygen atoms at
Here( ...) stands for a quantum and thermal average and- &(1/4,1/4,1/4). In the low-temperature phase two oxygen

py is the order-parameter amplitude. This condensatiojﬁtoms move towards the central uranium atom, as shown in

scheme corresponds to a domain shown in Fig. 1, and the G(jg. 2. The same applies to three other sublattices of ura-
. . . — . . nium. In NpG, such displacements are not possible. As fol-
are eight possible domains &fa3. In particular, there is a —

domain (iii) which we have already considered befor, ( lows from Fig. 1 for the®n3m structure, four threefold axes

VSR S —iF 4S—In h of neighboring neptunium quadrupoles are intersected at one
—{N1}, Sp—{Na}, Se—{na}, andSy—{ny}) when we ana-  noint \yhich isa(1/4,1/4,1/4). A shift of oxygen from this
Iyzed the_ variants of dlstrlb_utlon &,—Sy over four sublat-_ position along one of the main diagonésy,(111)) would
tices. This domain is obtained as a result of the followmgdestroy the threefold axial symmetry of other neighbors.
symmetry breaking:

Second, as we will show now, thea3 order corresponds

Fm5m1X§(<Ss(ﬁ§)>=<Sl(ﬁ§)>=<82(ﬁ§)>=0, to gn effelctlve attraction among the -quadrupole.s on the fcc
lattice while thePn3m order results in a repulsion among
X\ X\ X\ them. We calculate the direct bilinear electronic quadrupole-
= =(S =p1YyN#0
(S2(00) = (S5(0y)) = (S1(02)) pLVN=0) quadrupole interaction on a fcc lattice.
—Pa3 (Z=4) domainll. (2.5 We consider the quadrupolar componegtof T,, sym-

. S ) metry (i=1-3) at siten=0=(0,0,0)(e{n,}). There are
TheXs active representation is defined b}/ the stap} and 12 nearest neighbors of belonging to three different sub-
the loaded two-dimensional representatiohin Kovalev's lattices{n,}, p=2-4. The interactions between three com-

. 20 N
notation. ponentsS; centered an=0 and those ;) located at four

Tbhed sbymmetry lowering for thén3m structure is de-  hoqreqt neighborsn(=1-4) of the second sublattice(
scribed by e{n,}) are given in Table I.
Emam: X ((S. (%)) = “X\\ XY= 5. JN£0 The matrixS/(n)—Sj(n") for the fourth sublatticgn,}
M3M:Xs ((Su(0)) =(S(0y)) = (S5(02)) p2N#0) is given by the same table provided that the cyclic permuta-
—Pn3m (Z=4). (2.6 tion $;—S;, $,—S;, S3—S; is performed. Here we label

four nearest neighbors’' =5-8 ofn as 5=a(1/2,1/2,0), 6
Here agairp, is the order-parameter amplitude. TKg ac- g ( )

tive representafion ColrreSpO.ndS o the IrredECI_ble g TABLE I. The matrix of interaction&(ﬁ)—sj(ﬁ’) between
and the loaded one-dimensional representatibin Kova-  three quadrupolar components ah, symmetry, S;=Yi, S,
lev's notation?® There are four domains for tfgn3m struc- =Y}, S3=YZ. S are centered ai=(0,0,0),S; at four neighbors

ture. o n’ of the second sublatticgn,}.
Although the two structures look similar there are two

very important differencei between them. First, as we havg, Coord. .= (1L,1) 22 33 12 13 23
mentioned earlier, thd®a3 structure allows for displace-

ments of the oxygen sublattice, which can be understood ind  a(0,5,3 Yy a« a 0 0 8
simple way. Each uranium quadrupole &a3 can be 2 a(0,-%.3) y a a 0 0 -8
grouped with the two neighboring oxygen atoms lying on the3 a(0,—3,— 3 y a a O 0 B
correspondent main cube diagonal. For example, for the ura¢ 503, -1) Y a a 0 0 -8

nium atom at (0,0,0}sublatticen; and the quadrupole align-
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=a(—1/2,1/2,0), ZE=a(—1/2,—-1/2,0), and &a(1/2, scriptRin VRR stands for rotation, since the interaction de-
—1/2,0). The matriﬂ’(ﬁ)—sj’(ﬁ’) for the third sublattice Pends on the instantaneous orientation of the quadrupoles. In

{ns} is obtained from Table | by replacing,—S;, S,  analogy with the theory of molecular crystals we call this
interaction a rotation-rotation interactiort is most conve-

nient to write the quadrupolar interaction potential in Fourier
space as

—8}, S$3—S|. Here n' runs over the sites 9
=a(1/2,0,1/2), 16a(—1/2,0,1/2), 1Exa(—1/2,0-1/2),
and 12=a(1/2,0,-1/2).

In real space the interaction potential of quadrupoles on
fcc lattice sites is given by

RS 3(6)S(@S(-6) (2.7b)
> >, SN —~ i { : :
vRR— 2 E J(nnHsms ), (273 2%
where the elements of the interaction matipn,n’) follow
from Table | and corresponding permutatioihe super- The interaction matrix is then given by
|
7Cy2+ a(Cyyt ny) _IBSxy —BS;x
J(fi)=4 —BSy ¥Coxt a(Cyy+Cyy) - BSy; , (2.8
—BSx _IBSyz ')’ny+ a’(Cyz+ Czx
|
where  Cj;=cos(a/2)cosfja/2) and  §;=sin(ga/ From the above discussion of the condensation schemes

2)sin@a/2). The matrixJ(q) becomes diagonal at th and interactions, we conclude that in order to explain the

point of the Brillouin zone. FOIﬁ=af. we haVGJn(ai() Pn3m structure of Np@ one should resort to indirect oxy-

> > en mediated(superexchand® interactions between N
=4(y—2a), I 0})=J35(q)=—47. We observe thaty glectric quadrupolloes. g P

>0, <0, independent of the lattice constantFrom the This conclusion is further supported by a calculation of
condensation schem@.4) for the Pa3 structure, we then the coupling of the quadrupoles to phonons. By studying the
obtain that the interaction is maximum and attractive for theinteraction of quadrupoles on a deformable lattice, we found
condensation 0ofS;(qX). Similarly, \]ll((_i;(): —4y and that the direct electric quadrupole-quadrupole interaction in

SXy_ ; . >X NpO, leads to an expansion of the cubic lattice, which is in
J22(dz) 4y imply the condensation ofSy(qy) and contradiction with the experiment. Hence, we conclude in

S,(ay). respectively. We conclude that the direct quadrupoagreement with Refs. 13 and 14 that the direct quadrupole-
lar interaction on a fcc lattice stabilizes tia3 structure.  quadrupole interaction is not the driving mechanism for the
On the other hand, starting from the condensation schemen3m structure and the oxygen-mediated interactions are
(2.6) of the Pn3m structure, we findJ;y(q))=Jx(q))  important for this compound.

=J33(qX)=4(y—2a)>0, which is repulsive. Hence, the
Pn3m structure cannot be stabilized solely by the direct IIl. RXS AND DOMAIN STRUCTURE

electric quadrupole interaction. The fact that the quadrupolar . = =
. -q . P . — g , P Now we will study how thePn3m and Pa3 structures
interaction is attractive for th®a3 structure(and repulsive | onitest  themselves in  resonant x-ray  scattering

for Pn3m) is the reason why?a3 (and notPn3m) is found  experiment£®14The tensor of scattering on the quadrupolar

in many molecular solids with quadrupolar interactions suchjensity of a neptunium atom in a cubic lattice is given

as H, (Ref. 21, N, (Ref. 22, NaO, (Ref. 23. by?9-31

In fact, on a fcc lattice, the structure of the interaction

matrix (2.8) and the condensation scherf&4) is not re- 0 p1 py

stricted to quadrupolarl €2) interactions, but applies to s~ 0

order-parameter variables of evemultipoles that transform fa=1{ P1 P3| 3.

as the three components of an irreducible representatign p2 p3 O

of the cubic point grou The most prominent example is .

solid C60,24,§5 whgre tﬁjeh onentanona?ly ordered phase hasherep;=+1. We have the following correspondertg
b tween the functions,,, Eqgs.(2.29—(2.20, and the scat-

Pa3 structure. Here the icosahedral symmetry impokes

=6,10 . .., and theexpressions of the condensation schemd®ing tensors: the functiod, corresponds tda’ wherep,

and of the multipolar interactions are of forni@.4) and  =p2=p3=1, the functionS, to f, with p;=1, p,=p,

(2.8), respectively® =—1; the functionS, to f, with p;=p,=—1, p3=1; and
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SYMMETRY LOWERING AT THE STRUCTURAL PHAE . ..

TABLE II. Tensor F(h,k,1)=F M for the superstructure Bragg

reflections on quadrupolar densities of Npf=A,B or C, Eq.
(3.4), 1 (ii) and 1l (iii) refer to two domains of thé& a3 structure

described in the text, 0 is the zero matrix.

Bragg reflection Pn3m Pa3
h,k,l: (i) I (i) Il (iii)
h,k,/=2n 0 0 0
h,k,I=2n+1 0 0 0
h=2n+1, k,I=2n A C B
k=2n+1, h,1=2n B A C
I=2n+1, h,k=2n C B A
h,k=2n+1, =2n C B A
h,I=2n+1, k=2n B A (@
k,/I=2n+1, h=2n A C B

Sy to T4 with p,=ps=
structure amplitude is found as

N
Jf(h,k,l):n}_)1 f el X, (3.2)

—1, p,=1. The scattering tensor

PHYSICAL REVIEW B 68, 054112 (2003

TABLE Ill. The structure-factor amplituddépﬂp,(h,k,l)lrz for
four polarization channels of RXS and the matri¢es3, andC.

p—p’ A B C
o—0 0 0 —sin(2y)
o— T cosO cosy —cosO siny cos(2/)sin®
T—o cosO cosy —cos0 siny —cos(2)sin®
T — T 0 0 sin(2))sirf®

dard polarization vectoréi(i=1—3) parallel (;ri, frf) or
perpendicular ((;) to the scattered plane,

=(—siny,cosy,0), (3.59
= (—sin® cosy, —sin® siny,cosO), (3.5H
¢ = (sin® cosy,sin® siny,cosO). (3.50

A structure-factor amplitud&(h,k,) is found ag®-3!
Fo_p(hk1)=Fel, Me,, (3.6

whereT stands for transpose amd—p’ denotes one of the

whereK = (2/a)(h,k,1) stands for the vectors of the recip- four polarization channelsr—o, o— ¢, m—o, and

rocal lattice andx is the cubic lattice constant. In performing — 7¢.

The structure-factor amplitudes for the three cases

the summation in Eq.3.2) we distinguish four contributions (M=A,B,C) are quoted in Table Ill. The corresponding

from four sublatticesn,}, p=1-4. We are mainly inter-

intensities of the superstructure Bragg reflections are found

ested in superstructure Bragg reflections. We obtain thes!, ., (h,k,1)=|F, ., (hk1)[%

that, in general,

F(h,kH=FM, (3.3
whereF=fN and the matrixM is eitherA, B, or C:
0O 0 O 0 0 1
A={0 0 1|, B=l0 0 0],
01 0 1 0 O
(3.4
0 1 O
c=|1 0 O
0O 0 O

In Table Il we quote which of the matriceé\(B,C) occurs

for every particular case oh(k,l) for the Pn3m and Pa3
structures. We recall that the conditidhgor the isotropic
scattering on the fcc lattice of Nffrom the spherically sym-
metric densitiesare h+k,k+1=2n, which corresponds to
two first lines of Table II.

From Tables Il and Il one can easily obtain all necessary
dependencies for intensities of different polarizations. For

example, the intensity of the (003) reflection Bh3m is
exactly the same as the intensity of the same polarization of

the (300) reflection of domain (i) of Pa3, and the inten-

sity of the (030) reflection of domain Kiii) of Pa3. Fur-
thermore, the (013) reflection of domaifiil), and the (103)

reflection of domain l(iii) of Pa3 also have the same in-
tensity, and so on. Since both symmetries are very similar,
we believe that special care should be taken to discriminate

between the®>n3m and Pa3 structures.

Tables Il and IIl are also useful in considering the contri-
butions from the domains of the same group. If the domain
sizes are larger than the coherence length of the x rays, then
the effect of domains is reduced to averaging over the corre-
sponding intensities, which is a trivial task. However, the
tendency in recent synchrotron experiments is towards more
perfect and collimated beams and larger coherence lengths.
This implies, especially for the relatively soft x rays at the
actinideM edges, that the average should be taken over am-
plitudes rather than intensiti€&Our analysis below is given

Finally, we consider the polarization dependencies fofor such a case of coherent scattering on the crystal domains.
resonant x-ray scattering experiments. We assume that a We start with theP n3m structure. The four domains dif-

crystal has a fla(001) surface and the azimuthal angleis

counted from thex axis defined bye,=(1,0,0)** The
incident beam direction is given by —(cos® cosy,

fer by the orientation of th&'J 5(Q") quadrupolar function at

n=0. This function may be chosen to align along four main
cube diagonals, which are connected with each other through

—cosO siny, —sin®), and the scattered beam direction by rotations byw/2 about thez axis. Hence, all four domains are

(—cos0O cosy, —cosO siny, sin®). We introduce the stan-

obtained from the firsti) by applying three consecutive ro-
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tations byw/2 about thez axis. The effect of the domains in Fo,_ . (003=F cos®(—P''sin( ¢+ yp)
RXS experiments is equivalent to a superposition of four '
structure amplitudes, Table Ill, with angles ¢+ 7/2, ¢ +P" "oyt 4)), (3.9n

+, and ¢+3w/2. We label these domains by indices . . .
d1-d4, and introduce their populationy—Pg,. The The latter expression can be transformed to a shifted sin- or

population of a domaidl is defined a®y=Ng4/N, whereN, ~ c0S like functions, i.e..F,_ (003)~cos® sin(/+yy),
is the total number of neptunium atoms in the domain. Therwhereiy is a phase shift depending on the domain pattern of
we obtain from Eq(3.6) that the structure amplitude for the Pa3. P'', P'", andyy, 44 are given by Eqs(3.89 and
o— o and o— m; channels of the (003) reflection is given (3.8h), wherePy; (i=1-4) are replaced b}, or PY,. For

by the (300) reflection oPa3, we find
Fos(003=—FPsin2y), (3.79 F,_,(300=—FP'sin(2), (3.109
Foﬁwf(oo:;):'ﬁ:') cog24)sin®, (3.7b F,,ﬁﬂf(300)=’|\:m|5|005{2l//)sin®—ﬁP’”Sin(gb-l- 1//|0|)COS®.
(3.10b
where

Here, againP' is given by Eq.(3.7¢ for P!ﬁ, i=1-4. As
before, the superstructure Bragg reflections are suppressed in

P=(Pa1~Pa2tPas—Paa). (.79 the case of equal population of eight domains in the crystal.

If Pgy+Pgy3=Pgp+Pgs, P=0 and the (003) Bragg reflec-
tion is suppressed. Otherwise, tileand ® dependencies in
Egs.(3.7a and (3.7b are exactly the same as for a single  In resonant x-ray scattering experiments the transition to
domain, Tables II, lll. For the (300) reflection Bn3m one  the ordered phase &t =25.5 K in NpQ, manifests itself by
obtains that the appearance of superstructure Bragg reflectisnsh as
(003 and other§ which are not compatible with them3m
F(wa(3oo):"|ip’ cos® cog i+ o), (3.89 structure of the disordered phe?sJé‘.Paifa) et al,'* ascribed
the symmetry of the ordered phase to Bve3m space group

IV. CONCLUSIONS

where (No. 224, Ref. 18 In this work we have derived the sym-
metry lowering scheme for the phase transition, Ej6).
Yo=arccos[ Py1— Py3]/P’), (3.8  The active mode i, in notations of Stokes and Hatth
and 7’ in Kovalev's notatiorf’ It involves three quadrupolar
P'=\[Pg;— Pg3l?+[Pgo— Pgsl’ (3.80  components of the cubit,y (or I's) symmetry. At low tem-

peratures, the space symmetry is again cubic but there are
Comparing this result with the expression for a single do-four different sublattices which are characterized by four dif-
main, we observe that the main effect is the phase ghjft ferent orientations of the neptunium electronic quadrupole,
given by Eq.(3.80. The condition for suppression of the Fig. 1.

reflection isPy;=Pqs and Pg;=Pg4. The polarization de- BesidesPn3m, we discuss also the space groB@3
pendencies of the other reflections®h3m can be figured (o, 205, Ref. 18 which is another variant of the triplg®
out analogously. quadrupole ordering. This structure is realized for uranium

There are eight domains d?a3 structure. Earlier we gyadrupoles of UQ. Pn3m andPa3 are close symmetries.
have already considered the two basic variantBa3: | (ii) They imply condensations of different mod@s;{( andxg ,
and I (iii). The others are obtained by rotating these twoRef. 19 at the sameX— point of the Brillouin zone and
variants by the angles/2, m, and 3m/2 about thez axis.  differ in the way the threefold axes of symmetry are distrib-
Applying the rotations to | and II, we arrive at two series. We yted over varioug111) directions, Fig. 1. In both cases the
label the population of the series of domains by the indicegctinide site symmetry at low is rhombohedraltrigonal.
Py —Pus, andPy; P}, , respectively. The two series result We have shown that the two structures are different with
in two distinct scattering matrices, for example, for (003) respect to the direct bilinear quadrupole-quadrupole interac-
they areB andA, for (300) C andB, etc., see Table Il. The tions, ThePa3 structure leads to an attraction between the
domain pattern produces a superpaosition of eight tdans
plitudes. Each term corresponds to one of the two matrice
and to one of the four azimuthal angleg; ¢+ /2, ¢
+, andy+ 3/2. The relevant expressions are obtained in
the same way which we have used to derive E§s/a—
(3.70 and(3.89—(3.80. For example,

guadrupoles, while thBn3m symmetry implies a repulsion.
e then conclude that the direct bilinear quadrupole-
quadrupole interaction is not the leading one and that the
oxygen mediated interactions play an important role in these
dioxides. This oxygen mediated interaction results in differ-
ent space symmetries and condensation schemes fop NpO
and UG. Correspondingly, the oxygen site symmetry is dif-
Fﬁwf(OO?’):O’ (3.9a ferent. In NpQ below T, oxygen remains tetrahedrally
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coordinated while in the ordered phase of JJ@he uranium- change in Np@ are whether the same mechanism occurs in

oxygen bond strengthens at the expense of three others, sether cubic crystal§cerium (Refs. 10,1], YbInCu, (Ref.

Fig. 2. 12)] where “isostructural” phase transitions are accompanied
We have considered the dependence of the scattering arby a loss of magnetic moments, and how magnetic and struc-

plitude for different polarizations on the azimuthal angle tural properties are interconnectédThe issue is far from

and the Bragg angl@® taking into account the domain pat- complete understanding and we believe that further experi-

tern of both symmetriesPn3m and Pa3 produce super- Mental and theoretical works are needed to clarify it.

structure Bragg reflections at the same sitek() of the
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