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The time evolution of a wave packet in strained graphene is studied within the tight-binding model and
continuum model. The effect of an external magnetic field, as well as a strain-induced pseudomagnetic field, on
the wave-packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an
external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can
be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave
packet consisting of momenta around the K and K� Dirac points, the outgoing wave packet exhibits momenta
in only one of these Dirac points while the components of the packet that belong to the other Dirac point are
reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence
of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic
fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave
packet exhibits permanent spatial oscillations.
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I. INTRODUCTION

Since its first synthesis in 2004,1 graphene has been at-
tracting much interest due to its unique electronic properties
arising from its singular energy spectrum, where in the vi-
cinity of the points labeled as K and K� in reciprocal space,
the charge carriers behave as massless quasiparticles and ex-
hibit an almost linear dispersion.2 These quasiparticles obey
the Dirac-Weyl equations and therefore should be subject to
quasirelativistic effects, such as zitterbewegung, i.e., a trem-
bling motion caused by interference between positive and
negative energy states.3–5 The phenomenon of zitter-
bewegung was predicted in 1930 by Schrödinger6 and has
been subject of renewed interest over the past years. Previous
theoretical works have suggested few ways of experimen-
tally observing zitterbewegung, e.g., in narrow-gap
semiconductors,7 in III-V zinc-blende semiconductor quan-
tum wells with spin-orbit coupling8 and, more recently, in
monolayer9 and bilayer10 graphene. An experimental simula-
tion of the zitterbewegung of free relativistic electrons in
vacuum was performed by Gerritsma et al.11 by using
trapped ions.

Strain engineering in graphene has recently become a
widely studied topic.12–17 The elastic properties of graphene
nanoribbons were theoretically investigated by Cadelano et
al.,18 which studied the in-plane stretching and out-of-plane
bending deformations by combining continuum elasticity
theory and tight-binding �TB� atomistic simulations. Later,
Cocco et al.19 and Lu and Guo20 showed that a combination
of shear and uniaxial strain at moderate absolute deforma-
tions can be used to open a gap in the graphene energy spec-
trum. It has been shown recently that specific forms of strain
produce a pseudomagnetic field in graphene, which does not
break the time-reversal symmetry and which points in oppo-
site directions for electrons moving around the K and K�
points.21 The strain-induced magnetic field is expected to
produce Landau levels and, consequently, the quantum Hall

effect, even in the absence of an external magnetic field.22,23

Guinea et al.24 showed theoretically that an in-plane bending
of the graphene sheet leads to an almost uniform field. Lan-
dau levels as a consequence of strain-induced pseudomag-
netic fields greater than 300 T were recently observed with
scanning tunneling microscopy in nanometer-sized
nanobubbles.25

Although previous works have studied wave-packet
propagation for the Dirac-Weyl Hamiltonian of graphene in
the absence of external fields and potentials,26 or in the pres-
ence of uniformly applied external magnetic fields,9,27–29

there is still a lack of theoretical works on the wave-packet
propagation through potential and �pseudo�magnetic field
step barriers. Moreover, the time evolution of a wave packet
in graphene within the TB model, where the intravalley scat-
tering to higher energy states and intervalley scattering due
to defects appear naturally, is still hardly found in the litera-
ture. It is also interesting to see whether the results from
Dirac and TB approaches for graphene differ or are similar.

In this paper, we investigate the time evolution of wave
packets in graphene within the TB model, based on the split-
operator technique for the expansion of the time-evolution
operator. We trace a parallel between the results from the TB
model and those obtained from the Dirac approximation for
particles with momentum close to one of the Dirac cones of
the Brillouin zone of graphene. The proposed method is then
applied to the study of the dynamics of Gaussian wave pack-
ets in graphene under external magnetic fields. The effects of
the pseudomagnetic field induced by bending the graphene
sheet into an arc of circle are analyzed as well. Our results
show that for an appropriate choice of strain and external
magnetic field strength, the system exhibits a strong effective
magnetic field for particles in one of the Dirac cones whereas
in the other cone the external and pseudomagnetic fields can-
cel each other and the effective magnetic field is practically
zero. We show that this effect is manifested as a transient
�permanent� zitterbewegung for electrons in the cone where
the effective magnetic field is zero �nonzero�, which can be
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verified experimentally by detecting the electric field radia-
tion emitted by the trembling wave packet.27 Moreover, our
results show that with such a choice of external and strain-
induced magnetic fields, one can construct an efficient valley
filter, which can be useful for future valley-tronic devices.30

II. TIME-EVOLUTION OPERATOR

By solving the time-dependent Schrödinger equation, one
obtains that the propagated wave function after a time step
�t can be calculated by applying the time-evolution operator
on the wave packet at any instant t

��r�,t + �t� = e−�i/��H�t��r�,t� , �1�

where we assumed that the Hamiltonian H is time indepen-
dent. Different techniques have been suggested for the ex-
pansion of the exponential in Eq. �1�, e.g., the Chebyschev
polynomials method31 and the second-order differencing
scheme.32,33 The numerical method that we use for the appli-
cation of the time-evolution operator in this work, namely,
the split-operator method,34 is the subject of this section,
where we will show how this technique can be adapted for
the study of the wave-packet dynamics in graphene within
the tight-binding and Dirac approximations.

A. Tight-binding model

Graphene consists of a layer of carbon atoms forming a
honeycomb lattice, which can be described by the Hamil-
tonian

HTB = �
i

�ici
†ci + �

�i,j�
��ijci

†cj + �ij
� cicj

†� , �2�

where ci�ci
†� annihilates �creates� an electron at the site i,

with on-site energy �i, and the sum is taken only between
nearest-neighbor sites i and j, with hopping energy �ij. The
effect of an external magnetic field can be calculated by in-
cluding a phase in the hopping parameters according to the
Peierls substitution �ij→�ij exp�i e

�� j
iA� ·dl��, where A� is the

vector potential describing the magnetic field.35,36 In a
strained graphene sheet, the distance between two adjacent
sites i and j is changed by �aij =aij −a0, where a0 is the
lattice parameter of unstrained graphene and aij is the dis-
tance between the sites after the stress. The change in the
intersites distance affects the hopping energy between the
sites, which becomes21 �ij→�ij�1+2�aij /a0�. A similar ex-
pression can be obtained by expanding Eq. �13� of Ref. 37 in
Taylor series and neglecting higher-order terms in �aij, i.e.,
considering small lattice deformations. The strain-induced
change in the hopping energies leads to an effective pseudo-
magnetic field, which points to opposite directions in the
valley K and K�.22 Notice that the pseudomagnetic field in
our model is not introduced artificially by considering an
additional vector potential in the Peierls phase but it rather
appears naturally after the changes in the intersite distances
due to the strain.

Let us label the sites i of the graphene lattice according to
their line and column numbers n and m, respectively, as
shown in Fig. 1�a�. The basis vector state 	n ,m� represents an

electron confined on the site of line n and column m. In a
lattice consisting only of noninteracting sites, each 	n ,m� is
an eigenstate of HTB with energy �n,m, i.e., HTB	n ,m�
=�n,m	n ,m�. Limiting ourselves to nearest-neighbor interac-
tions, we find

HTB	n,m� = �nm	n,m� + Tm+1	n,m + 1� + Tm−1	n,m − 1�

+ Tn+1	n + 1,m� + Tn−1	n − 1,m� , �3�

where Tn�1 and Tm�1 are equivalent to the hopping energies
�ij between the site i= 
n ,m� and the adjacent sites j
= 
n�1,m� and j= 
n ,m�1�, respectively. Equation �3� can
be rewritten as

HTB	n,m� = Hn	n,m� + Hm	n,m� , �4�

where the operators Hn and Hm are defined as

Hn	n,m� = Tm+1	n,m + 1� + Tm−1	n,m − 1� +
�nm

2
�5a�

and

Hm	n,m� = Tn+1	n + 1,m� + Tn−1	n − 1,m� +
�nm

2
. �5b�

The wave function at any instant t is then written as a linear
combination of the basis vector states �n,m

t =�n,mbn,m
t 	n ,m�.

The advantage of following the procedure described by Eqs.
�3�–�5� lies in the fact that the operators Hn and Hm in Eq. �5�
can be represented by tridiagonal matrices, which are easier
to handle than the matrix representing the full Hamiltonian,
Eq. �3�.

The split-operator technique can now be applied to
Hamiltonian �4� so that the time evolution operator is ap-
proximated by

e−�i/��HTB�t = e−�i/2��Hm�te−�i/��Hn�te−�i/2��Hm�t + O��t3� ,

�6�

where the error comes from the noncommutativity between
the operators Hn and Hm. We drop the O��t3� terms by con-
sidering a small time step �t=0.1 fs. The propagated wave
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FIG. 1. �Color online� �a� Sketch of the honeycomb lattice of
graphene, made out of two superimposed triangular lattices A and
B. The atoms are labeled as 
n ,m� according to their line and col-
umn numbers n and m, respectively. �b� Reciprocal lattice of
graphene, with K �black� and K� �gray� Dirac points, where the area
defined by the reciprocal vectors b�1= �−2� /3a0 ,�3� and b�2

= �4� /3a0 ,0� represents the first Brillouin zone. The numbers close
to each Dirac point are explained in the text.
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function is then obtained from Eq. �1�, which in this case
reads

�n,m
t+�t = e−�i/2��Hm�te−�i/��Hn�te−�i/2��Hm�t�n,m

t . �7�

This equation is solved in three steps

	n,m = e−�i/2��Hm�t�n,m
t , �8a�


n,m = e−�i/��Hn�t	n,m, �8b�

�n,m
t+�t = e−�i/2��Hm�t
n,m. �8c�

Using the Cayley form for the exponentials,38 we can rewrite
Eq. �8a� as

	n,m = e−�i/2��Hm�t�n,m
t =

1 −
i�t

4�
Hm

1 +
i�t

4�
Hm

�n,m
t + O��t2� , �9�

which leads to


1 +
i�t

4�
Hm�	n,m � 
1 −

i�t

4�
Hm��n,m

t . �10�

As the wave function �n,m
t is already known, the matrix

equation in Eq. �10� can be straightforwardly solved to ob-
tain 	n,m. We repeat this procedure for the other two expo-
nentials in Eqs. �8b� and �8c�, and eventually obtain �n,m

t+�t.
In fact, the form in Eq. �10� can also be applied to the full

Hamiltonian HTB, i.e., without splitting the Hm and Hn terms.
However, this would lead to matrix equations involving pen-
tadiagonal matrices, which are harder to handle than the
tridiagonal matrices in Eq. �10�. As the error produced by the
splitting in Eq. �7� is smaller than the error produced by the
�necessary� expansion of the exponential given by Eq. �10�,
it is worthy to split these terms in order to simplify the nu-
merical calculations.

B. Dirac-Weyl equation

From the TB Hamiltonian �2�, considering an infinite
graphene sheet in the absence of external potential and mag-
netic fields, one obtains the energy band structure of
graphene as

E�k�� = � ��3 + f�k�� ,

f�k�� = 2 cos��3kya0� + 4 cos
�3

2
kya0�cos
3

2
kxa0� ,

�11�

which is gapless in six points of the reciprocal space where
E=0, from which only two are inequivalent, labeled as K and
K�, as shown in Fig. 1�b�.2,39 In the vicinity of each of these
points, the dependence of the energy spectrum on the wave
vector k� is almost linear and the electron can be described as
a massless fermion by the Dirac Hamiltonian

HD = �vF�� · �p� + eA� � + V�x,y�I�e−i�, �12�

where vF=3�a0 /2� is the Fermi velocity, A� is the electro-
magnetic vector potential, V�x ,y� is an external potential, I is
the identity matrix, �� is the Pauli vector, and the wave func-
tions are pseudospinors �= ��A ,�B�T, with �A�B� as the
probability of finding the electron in the sublattice A�B� that
composes the honeycomb lattice of graphene.2 The angle �
is different for electrons around the K and K� Dirac cones. In
the vicinity of the kth Dirac point �see labels for each Dirac
point in Fig. 1�b��, one obtains �=−� /6+k� /3, with k
=1–6. From here onward, we will refer to the coordinates in
the Dirac �TB� model as x�x� and y�y�.

The exponential term in Eq. �12� is usually dropped be-
cause it can be considered as a phase in the state vectors in
the Dirac model. However, this term has an important mean-
ing when comparing with the TB model: this exponential can
be identified as a rotation operator with angle �. Notice that
an infinite graphene hexagonal lattice has C6v symmetry, i.e.,
it is symmetric only for rotation angles k� /3 �k integer�. As
a consequence, the Dirac Hamiltonian �12� without the ex-
ponential term is not symmetric in the momenta p̂x and p̂y, as
already pointed out previously.9 So, what would be the
meaning of the direction-dependent observables in the Dirac
description of graphene, when they are not symmetric under
rotation, exhibiting a privileged direction? Defining y �x� as
the zigzag �armchair� direction, as in Fig. 1�a�, the results
obtained by the Dirac approximation for the x and y compo-
nents of any observable are compared to the armchair and
zigzag directions, respectively, after performing a rotation �
in the coordinates of the Dirac model. From the possible
values of �, one deduces straightforwardly that at any Dirac
cone, the coordinate x �y� of the Dirac model is always re-
lated to one of the zigzag �armchair� directions of the real
graphene lattice. On the other hand, for finite rectangular
samples the different angles � represent two distinguishable
situations, since the rectangle does not share the C6v symme-
try of the infinite graphene lattice: the x direction in the
Dirac model for the odd �even� cones in Fig. 1�b� represents
a diagonal �vertical� direction in the rectangle. The compari-
son between the TB model for a rectangular graphene flake
and the Dirac approximation will be discussed in details fur-
ther, in the following section.

In a recent work, Maksimova et al.26 presented an analyti-
cal study of the time evolution of a Gaussian wave packet in
graphene in the absence of external potentials and/or mag-
netic fields within the continuum model, i.e., using the Dirac-
Weyl Hamiltonian for electrons in the vicinity of the Dirac
point K. In this paper, we will use an alternative and more
general way of calculating the dynamics of a wave packet in
such a system,39 based on the split-operator technique, which
can be applied for systems under arbitrary external potentials
and magnetic fields.

The Dirac-Weyl Hamiltonian HD in Eq. �12� can be sepa-
rated as HD=Hk+Hr, where Hk=�vF�� ·k� keeps only the
terms which depend on the wave vector k� whereas Hr

=vFe�� ·A� +VI depends only on the real-space coordinates x
and y. Following the split-operator method, the time-
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evolution operator for the Hamiltonian HD can be approxi-
mated as

exp�−
i�t

�
�Hk + Hr��

� exp�−
i�t

2�
Hr�exp�−

i�t

�
Hk�exp�−

i�t

2�
Hr�

�13�

with an error on the order of O��t3�, due to the noncommu-
tativity of the operators involved. We invoke a well-known
property of the Pauli vectors

exp�− iS� · �� � = cos�S�I − i
sin�S�

S
�S� · �� � �14�

for any vector S� , where S= 	S� 	, and rewrite the exponentials
in real and reciprocal space, respectively, in matrix form

Mr = �cos�A�I − i
sin�A�

A

 0 Ax − iAy

Ax + iAy 0
��e− i�t

2�
V,

�15a�

Mk = cos�
�I − i
sin�
�




 0 
x − i
y


x + i
y 0
� , �15b�

where A= 	A� 	 =�tvFe 	A� 	 /2�, 
� =�tvFk� and 
= 	
� 	
=�tvF

�kx
2+ky

2, so that the time evolution of a wave packet
�D�x ,y�= ��A ,�B�T��x ,y� can be calculated as a series of
matrix multiplications

��r�,t + �t� = Mr · Mk · Mr��r�,t� + O��t3� . �16�

The matrix multiplication by Mk is made in reciprocal space
by taking the Fourier transform of the functions. In the ab-
sence of magnetic fields and external potentials, one has
Mr=I and

��r�,t + �t� = Mk��r�,t� , �17�

where the matrix multiplication in reciprocal space gives the
exact result for the time evolution of the wave packet, since
there is no error induced by noncommutativity of operators
or matrices in this case. This shows that the split-operator
method provides a way to study the dynamics of wave pack-
ets in graphene within the continuum model where, in the
presence of magnetic fields and/or external potentials, one
can control the accuracy of the results by making �t smaller,
while in their absence, the problem is solved exactly by a
simple matrix multiplication for any value of �t.

III. RESULTS AND DISCUSSION

We shall now discuss the results obtained for a graphene
lattice with 2000�3601 atoms, with armchair �zigzag� edges
in the x�y� direction. The nearest-neighbor hopping param-
eter and the lattice constant of graphene are taken as �=
−2.7 eV and a0=1.42 Å, respectively.

As initial wave packet, we consider a Gaussian centered
at r0�= �x0 ,y0� in real space and q� = �qx

0 ,qy
0� in reciprocal

space,

�q�r�� = N
c1

c2
�exp�−

�x − x0�2 + �y − y0�2

2d2 + iq� · r�� ,

�18�

where N is the normalization factor. Notice that we have
included a pseudospinor �c1 ,c2�T in the initial wave packet,
where c1�2� is the probability of finding the electron in the
triangular sublattice A�B� that composes the graphene hex-
agonal lattice. One can also rewrite the pseudospinor as
�1,ei��T, where the pseudospin polarization angle � is shown
explicitly. The pseudospin is a concept normally attributed to
the Dirac description of graphene. Indeed, the pseudospin of
a wave function in the Dirac model is related to the expec-
tation values of the Pauli matrices ��i�, which can involve
integrals of the product between wave functions for sublat-
tices A and B. Such a definition fails for the TB wave func-
tions since in this case they are defined in different points of
the lattice, so that any integral that mixes functions of both
sublattices gives zero. Even so, the study of the pseudospin
related to the initial discrete wave packet helps to understand
the wave-packet dynamics obtained from the TB model, as
we will see further in this section.

A. Initial pseudospin polarization and zitterbewegung revisited

In this section, we will use the TB model to review some
of the main properties of the wave-packet dynamics in
graphene. Within the TB model, we consider the initial wave
packet as a discrete form of the Gaussian distribution in Eq.
�18� for the graphene hexagonal lattice, where we multiply
the Gaussian function by c1�2� in the sites belonging to the
triangular sublattice A�B�. From Eq. �11�, it is clear that in
momentum space, the region of interest is the vicinity of the
Dirac points K and K�, since the energy corresponding to
wave vectors out of this region is very high.

In the TB model for two-dimensional crystals, one usually
considers the same Gaussian distribution for all the sites of
the lattice.40 This is equivalent as choosing c1=c2=1 in Eq.
�18�. Figure 2�a� shows the contour plots of the squared
modulus of the propagated wave functions at t=40 fs for
these values of ci, considering an initial wave vector q�
= �0,ky

0�+K, i.e., in the vicinity of the K point labeled as 2 in
Fig. 1�b�. As shown in Ref. 26, the wave-packet dynamics
near the Dirac cones in graphene does not depend separately
on the momentum ky

0 or on the width d but rather on the
dimensionless quantity ky

0d. This result was obtained from
the Dirac model for graphene, i.e., considering that even high
energies states exhibit linear dispersion. Within the TB
model we expect that wave packets with the same ky

0d be-
have alike only if ky

0 is not too far from the Dirac cone and if
d is not too small, so that the packet is well localized in
energy space. Within these conditions, Fig. 2 shows the time
evolution for different values of this dimensionless quantity:
ky

0d=1 and 2, with d=100 Å, and ky
0d=4, with d=200 Å.

We observe that the dispersion of the wave packet is stronger
for smaller values of ky

0d, where it becomes distorted into an
arclike shape. For larger ky

0d, on the other hand, the wave
packet keeps its circularly symmetric shape for longer times.
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As explained in the previous section, in order to obtain
the Dirac Hamiltonian Eq. �12�, one must shift the origin of
the wave vectors k� to one of the six Dirac points shown in
Fig. 1�b�. Besides, one must also rotate the x and y axis by an
angle � which depends on the K or K� point that is consid-
ered as the origin in momentum space. For the K
= �0,4� /3�3a0� point, labeled as 2 in Fig. 1�b�, the Dirac
Hamiltonian �12� is obtained by rotating the axis by 90°,
with other words, by a transformation of the coordinates as
x→−y and y→x. The pseudospinor c1=c2=1 represents a
wave packet polarized in x direction, i.e., ��x��0 and ��z�
= ��y�=0. From the Heisenberg picture, we obtain the veloc-
ity in the x direction for the proposed wave packet as

dx

dt
=

1

i�
�x,HD� = vF�x. �19�

Performing the appropriate coordinate transformations, the
velocity obtained from the TB model for the y direction must
be consistent with the prediction from the Dirac approxima-
tion, namely, vy =dx /dt=vF�x. This suggests that such a
wave packet propagates toward the positive y direction, but
with nonconstant velocity, since �x does not commute with
HD. The expectation value of the y position of the packet �y�
is shown as a function of time by the curves in Fig. 2�b�, for
ky

0d=1 �solid�, 2 �dashed�, and 4 �dotted�, where the results
obtained by the Dirac equation are shown as symbols for
comparison. A different linear behavior is already observed
for each wave packet at large time, implying that they have
different velocities, which is kind of counterintuitive, since
low-energy electrons in graphene are expected to propagate
always with the same Fermi velocity vF. Figure 2�c� shows

the velocity vy, calculated by taking the derivative of the TB
results for �y� with respect to time, which exhibits clear os-
cillations that are damped as time evolves, converging to a
final value vy

f �vF that depends on the initial wave packet’s
width d and wave vector ky

0. The velocities obtained by the
Dirac model are shown by symbols, where the same qualita-
tive behavior is observed as obtained from the TB model,
though for higher wave-packet momentum and width, a
small quantitative difference is observed, which is a conse-
quence of the different energy-momentum dispersion.

The oscillatory behavior of the velocity is a manifestation
of the zitterbewegung, i.e., a trembling motion of the wave
packet due to the interference between positive and negative
energy states that makes up the initial Gaussian wave
packet.3,9 This effect is well known for relativistic particles,
which are described by the Dirac equation, and is also ob-
served for electrons in graphene in the vicinity of the K and
K� points, since they can be described as massless quasipar-
ticles by the Dirac equation as well. The velocity wiggles
with shorter period and smaller amplitudes for larger values
of ky

0d. The convergence of the velocities demonstrates that
the zitterbewegung is not a permanent but a transient effect.9

Figure 3 shows the converged velocity vy
f as a function of

�a� the momentum ky
0 and �b� the width d of the Gaussian

wave packet. The TB results �symbols� are compared to
those calculated from Eq. �31� in Ref. 26 �curves�, which
was obtained analytically from the Dirac approximation in
the t→� limit and is repeated here just for completeness

FIG. 2. �Color online� �a� Contour plots of the squared modulus
of the wave function after a time evolution of t=40 fs, for three
different values of the dimensionless parameter ky

0d. �b� Expectation
value of the position and �c� velocity in y direction as a function of
time. The results obtained from the TB �Dirac� model are presented
as curves �symbols�, for ky

0d=1 �solid, circles�, 2 �dashed, tri-
angles�, and 4 �dotted, squares�

FIG. 3. �Color online� Final velocities for the Gaussian wave
packet in Eq. �18�, with pseudospin c1=c2=1 and momentum q�
= �0,ky

0�+K as a function of �a� the momentum ky
0, for widths d

=50 Å, 100 Å and 200 Å, and �b� the width d, for momenta ky
0

=0.01 Å−1, 0.02 Å−1, and 0.04 Å−1. The symbols �curves� are ob-
tained from the TB �Dirac� model. In �b�, the results from the Dirac
model for ky

0=0.02 Å−1 �dashed� and 0.04 Å−1 �solid� are multi-
plied by 0.985 and 0.97, respectively.
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vy
f

vF
= 1 −

1 − e−�ky
0d�2

2�ky
0d�2 . �20�

Within the Dirac model, one can observe that increasing d or
ky

0 in Eq. �20�, the final velocity increases monotonically and
approaches vF, which is reasonable, since a wider packet in
real space leads to a narrower distribution in k space,
whereas a higher value of the wave vector makes the center
of the packet lay far from E=0. In both cases, the interfer-
ence with negative energy states is reduced and, conse-
quently, zitterbewegung effects are less significant. However,
since the analytical formula �20� does not take into account
any effect such as the curvature of the energy bands for
higher energy states or trigonal warping effects, this formula
is not expected to give accurate results for larger ky

0. Indeed,
Fig. 3�a� shows that a very good agreement between TB and
Dirac results can be observed only for small values of ky

0

whereas for large ky
0, the final velocities obtained from the

TB model are lower than those obtained from the Dirac
model and do not increase monotonically, but decreases
slowly for very large ky

0, as a consequence of the curvature of
the energy bands. On the other hand, in Fig. 3�b� we observe
that varying the wave packet width for a fixed momentum,
good qualitative agreement with the Dirac model is obtained
for almost any value of d. The curves for larger values of ky

0

�solid and dashed� are just quantitatively different from those
obtained by the TB model, and they are comparable to the
TB results after multiplication by a factor 0.985 �0.970� for
ky

0=0.02 Å−1 �0.04 Å−1�. Worse qualitative agreement be-
tween TB and Dirac results in this case is observed only for
very small d, where the Gaussian width in energy space,
given by �E=vF�d−1, incorporates higher energy values,
leading to deviations in vy

f obtained from the TB model as
compared to those from the Dirac model.

In Fig. 4�a� we show contour plots of the squared modu-
lus of the wave function at t=40 fs for three different
choices of wave vectors q� = �kx

0 ,ky
0�+K and initial pseudos-

pinors: �1� �1,0�T, with kx
0=0 and ky

0d=4, �2� �1, i�T, with
kx

0=0 and ky
0d=4, and �3� �1, i�T, with kx

0d=4 and ky
0=0. The

curves �symbols� in Fig. 4�b� show the expectation value �x�
for each case obtained by the TB �Dirac� model. In case 1
�solid, circles�, the pseudospinor points in the z direction, so
that ��x�= ��y� and, consequently, the velocity for both in-
plane directions must be zero. Indeed, the wave packet splits
into two equal parts that propagate in opposite y directions,
leading to vy =0. In the x direction, although there is still a
small zitterbewegung, �x� rapidly converges to a constant,
leading to vx=0. In case 2 �dashed, triangles�, the pseudos-
pinor points in the y direction but the momentum of the wave
packet in this direction is zero, so that the packet splits in the
y direction, since vy =vF�x=0, but drifts slowly in the −x
direction �or, equivalently, y�. In case 3 �dotted, squares�,
both the pseudospin and the momentum are in the y direc-
tion, so that the wave packet propagates in this direction
without any splitting. This situation is comparable to the one
in Fig. 2�a�, since in both cases the pseudospin and momen-
tum are in the same direction and, as a consequence, the
wave packet propagates in this direction practically preserv-

ing its circular symmetry. However, in the case 3, the packet
still presents a very weak oscillation in the y direction, and
also drifts very slowly in this direction, as one can see from
the trajectory of the packet in the x-y plane for this case,
shown in the inset of Fig. 4�b�. This oscillation and drift are
related to the contributions of higher energy states in the
wave packet: a wave packet centered around kx

�0�=0 and
ky

�0��0, as in Fig. 2�a�, has a symmetric distribution of mo-
menta in x direction even for higher energies and, conse-
quently, there is no additional oscillation in this direction. On
the other hand, a packet centered around kx

�0��0 and ky
�0�

=0, as in Fig. 4�b�, does not have a symmetric distribution of
momenta in the y direction due to the trigonal warping for
higher energies and, consequently, some oscillations are ob-
served in this direction. As the standard Dirac Hamiltonian
HD for graphene does not take trigonal warping into account,
this effect is not observed in the Dirac model.

In the numerical work of Thaller,3 as well as in the ana-
lytical work of Maksimova,26 it is demonstrated within the
Dirac model that even when ky

0=kx
0=0, wave packet motion

is still observed due to zitterbewegung effects. The velocities
of the wave packet obtained from our TB model of graphene
for wave-packet momenta exactly at the K� and K, i.e.,
points 1 and 2 in Fig. 1�a�, respectively, are shown in Fig. 5.
The velocities exhibit a damped oscillation with the same
time-dependent modulus for any pseudospin and Dirac point,
though they point in different directions: for �1,1�T �solid�
and �1, i�T �circles� in K, the velocity is in the y and −x
directions of the lattice, respectively, which are exactly the

FIG. 4. �Color online� �a� Contour plots of the squared modulus
of the wave function after a time evolution of t=40 fs, for three
initial configurations of pseudospin �c1 ,c2�T and momentum q�0: �1�
�1,0�T, kx

0=0 and ky
0d=4; �2� �1, i�T, kx

0=0 and ky
0d=4; and �3�

�1, i�T, kx
0d=4, ky

0=0. �b� Expectation value of x obtained by the TB
model for the initial wave packets 1 �solid�, 2 �dashed�, and 3 �dot-
ted� as a function of time. The results obtained by the Dirac model,
after the appropriate coordinates rotation �see text�, are shown as
circles, triangles, and squares, respectively. The inset shows the
trajectory of the wavepacket obtained from the TB model for the
initial wave packet 3.
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directions of polarization of these pseudospinors after the
�=� /2 rotation required by the K cone 2. In the K� cone 1,
the rotation angle is �=� /6 and, accordingly, the velocity
points in this direction, as one can see by the decomposition
of the velocity in the components �vx� �dashed� and �vy�
�dotted�, which obey exactly the relations �vx�= ��3 /2��v�
and �vy�= �1 /2��v�. Notice that the velocities converge ex-
actly to vF /2, a value that can also be obtained analytically
by making ky

0d→0 in Eq. �20�.
Henceforth, we will consider initial wave vectors q�0

around the Dirac points 2 and 5 of Fig. 1�b�, namely,

K = 
0,
4�

3�3a0
� and K� = 
0,−

4�

3�3a0
� , �21�

respectively. This choice is very convenient, since the rota-
tion angles for these points are �=� /2 and 3� /2, respec-
tively, so that the pseudospinor �1,1�T points to the y �−y�
direction in the former �latter� case. Hence, with this pseu-
dospinor, wave packets in K �K�� will propagate with posi-
tive �negative� velocity in the vertical zigzag direction.

B. External magnetic fields and strain

Recently,24 it was shown theoretically that bending a
graphene sheet into an arc of a circle produces a strong and
almost uniform pseudomagnetic field profile. Figure 6�a� il-
lustrates such a strained system, where the rectangular
graphene sample of width W and height L is bent into an arc
of a circle with inner radius R. As the �pseudo�magnetic field
points in the same direction �opposite directions� at each K
and K� points,21 the combination of both external and strain-
induced magnetic field effects provides a valley-dependent
magnetic field. If one applies the appropriate external mag-
netic field for some configuration of the strained graphene,
one can obtain an almost perfect suppression of the effective

magnetic field at one of the Dirac cones, while the effective
field in the other cone is enhanced. This leads to a compli-
cated system to be studied within the Dirac approximation,
since one has two completely different systems for the K and
K� valleys. Namely, Landau levels would be present only
around one of the cones �though one cannot expect a perfect
Landau level spectrum, since the strain-induced magnetic
field is not perfectly uniform in space�, whereas in the other
cone, the usual continuum spectrum would be observed. This
motivated us to analyze the trajectories of a wave packet in
such a system within the TB model, where we do not need to
include the pseudomagnetic fields artificially in the Dirac
cones, since they appear naturally when we consider the ef-
fect of the strain-induced changes in the inter-site distances
on the hopping energies, as explained in the previous section.

In this section, we investigate the dynamics of a wave
packet with width d=200 Å and initial wave vector kx

0=0
and ky

0=0.02 Å−1 around the Dirac points K and K� of Eq.
�21� in the presence of external and strain-induced magnetic
field barrier steps. As in the K� valley the pseudospinor
�1,1�T is polarized in the negative y direction of the
graphene lattice, we choose �1,−1�T for this case, so that a
wave packet in this valley will also propagate in the positive
y direction. In order to obtain a pseudomagnetic field barrier
step, we consider that the graphene layer is strained only in
the y�0 region, as sketched in Fig. 6�b�. We also consider
an external magnetic field B� =B��y�ẑ, where ��y� is the
Heaviside step function, which leads to a magnetic barrier
step for y�0, described by the vector potential A� = �
−By��y� ,0 ,0�. In order to avoid effects due to zitter-
bewegung in the �pseudo� magnetic field region, the wave
packet starts at the position x0=0, y0=−420 Å, so that it can
travel for some time in the magnetic field-free region y�0
until its velocity converge to a time-independent value.

The influence of the external and strain-induced magnetic
field barriers on the trajectories of the wave packet are ana-
lyzed separately in Fig. 7, which shows the trajectory of the
centroid of the wave packets in K �symbols� and K� �curves�
points, calculated as �r�= ��x� , �y��, �a� in a nonstrained
graphene sheet with magnetic field barriers B=5 T �solid,
circles�, 7 T �dashed, triangles� and 10 T �dotted, squares�

FIG. 5. �Color online� �a� Expectation value of the velocity as a
function of time, for wave packets with ky

0=kx
0=0 and pseudospinor

�1,1�T �solid� and �1, i�T �circles� at the Dirac point K
= �0,4� /3�3a0� �point 2 in Fig. 1�b��, and �1,1�T �triangles� at
K�= �2� /3a0 ,2� /3�3a0� �point 1 in Fig. 1�b��. The x and y com-
ponents of the velocity in the latter case are shown as dashed and
dotted curves, respectively.

L

W

R

y

x

0

(a) (b)

FIG. 6. �Color online� �a� Sketch of the strained graphene sheet:
we consider a rectangular sample of width W and height L, bent into
an arc of circle with inner radius R. The unstrained graphene sheet
is shown as open circles, for comparison. �b� Strain-induced mag-
netic field barrier step, obtained by bending the graphene lattice
only in the y�0 region. The number of atoms was reduced in both
figures, in comparison to the lattices studied in this work, in order to
improve the visualization.
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and �b� in a strained graphene sheet with radius R=1 �m
�solid, circles�, 0.8 �m �dashed, triangles� and 0.6 �m �dot-
ted, squares�. All the trajectories form semi-circles in the y
�0 region, which is due to the Lorentz force produced by
the �pseudo� magnetic field. As the external magnetic field
�radius of the strained region� increases �decreases�, the radii
of these semicircular trajectories are reduced, since a higher
�pseudo�magnetic field produces a stronger modulus of the
Lorentz force. Notice that the radii of trajectories in the ex-
ternal and pseudomagnetic fields cases are comparable,
which means that for radii R=1−0.6 �m of the strained
graphene, the generated pseudomagnetic field is also within
�5 T and 10 T. Indeed, the strain induced pseudomagnetic
field distribution for the bend graphene ribbon is given by24

BS�x,y� = − 4c
��0

aL
arcsin
 L

2R
�cos�2x

L
arcsin
 L

2R
��

� �1 −
R + y

L
arcsin
 L

2R
�� , �22�

where ��2 and c is a dimensionless constant which de-
pends on the details of the atomic displacements.22 Consid-
ering L /R→0 in Eq. �22� the pseudomagnetic field can be
approximated as BS�−c��0 /aR=� /R. Using the value �
�4.5�104 T Å estimated numerically in Ref. 23, one ob-
tains pseudomagnetic fields within BS�4.5–7.5 T for R
=1 �m−0.6 �m, which are of the same order of magnitude
as the external magnetic fields that we considered. For the
external magnetic field barrier, the trajectories of wave pack-
ets in K and K� points form circles in opposite directions, as
shown in Fig. 7�a�, which is reasonable, since these packets
have opposite momentum, which causes a sign change in the
Lorentz force. Conversely, considering the strain-induced
magnetic barrier illustrated in Fig. 6�b�, the trajectories of

wave packets in K and K� curve in the same direction, since,
although their momenta have opposite signs, the pseudomag-
netic fields also point in opposite directions at each Dirac
cone K and K�.

C. Strain-induced valley filter

Let us consider the strained sample in Fig. 6�b� with R
=1 �m. By comparing the radius of the semicircular trajec-
tory of the wave packet in such a system with those obtained
for different intensities of the external magnetic field barrier,
one obtains the strain-induced magnetic field for this value of
R as �4.9 T. Figure 8�a� shows the trajectories in the x-y
plane of the centroid of the wave packets in a system where
we combine a R=1 �m strain for y�0 with an external
magnetic field barrier B=0 T �solid, open� and 4.9 T
�dashed, full�, for wave packets in the K �symbols� and K�
�curves� Dirac points. In the absence of the external magnetic
field, both the K and K� packets exhibit the same semicircu-
lar trajectory, as discussed earlier. However, when we com-
bine the effect of the strain-induced and external magnetic
field barriers, the wave packet in K� undergoes a stronger
Lorentz force and is readily reflected, whereas the one in the
K point performs a practically straight trajectory, as if this
packet is not influenced by any Lorentz force. This is a con-
sequence of the fact that combining the effects of a pseudo-
magnetic field produced by a R=1 �m strain and a B
=4.9 T external magnetic field produces a stronger magnetic
field in the K� point, while in the K point these fields equili-
brate, producing a practically magnetic field-free region for
particles in this cone. In this situation, the system works as a
valley filter, where only wave packets in the K Dirac cone
are allowed to pass through the strained region, whereas the
wave packets in K� are reflected. The results for the wave
packet in K for two other values of the external magnetic
field are shown as thin solid lines, showing that within a
range of �B= �0.2 T around B=4.9 T, which is a reason-
able range for magnetic field intensities in experiments, only

FIG. 7. �Color online� Trajectories of the wave packet in the x-y
plane, obtained by the TB method for such a system, for initial
momentum ky

0=0.02 Å−1 around K �symbols� and K� �curves�
points, for �a� nonstrained graphene with magnetic barrier height
B=5 T �solid, circles�, 7 T �dashed, triangles�, and 10 T �dotted,
squares�, and for �b� a graphene sheet bent into an arc of circle with
radius R=1 �m �solid, circles�, 0.8 �m �dashed, triangles�, and
0.6 �m �dotted, squares�, considering B=0 T. In �b�, symbols and
curves coincide for each value of R.

FIG. 8. �Color online� �a� Trajectories on the x-y plane for wave
packets with initial momentum ky

0=0.02 Å−1 around K �symbols�
and K� �curves� points, considering a graphene sheet bent into an
arc of circle with radius R=1 �m and an external magnetic field
B=0 T �open, solid� and 4.9 T �full, dashed�. The thin solid curves
show the results for two other magnetic field intensities for the K
packet. �b� Probability of finding the particle in y�0 as a function
of time, for wave packets with the same configurations as in �a�.
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a weak Lorentz force is observed and the valley filter works
fine.

The results of Fig. 8 are obtained for both external and
pseudomagnetic field barriers starting at the same position
y=0. It is straightforward to verify that if there is a mismatch
between the starting points of the strained and external field
regions, some deviations will occur in the trajectories of the
wave packets but, provided the length of the mismatch is
much smaller than the magnetic length, the filtering effect is
still stable. As an example, a 30 Å mismatch between the
external and pseudomagnetic field barriers in the system ana-
lyzed in Fig. 8 would produce a �5° deviation in the other-
wise vertical trajectory of the wave packet in K whereas the
wave packet in K� is still readily reflected by the combina-
tion of magnetic fields in the filter region.

The probability P� of finding the particle in the strained
y�0 region, calculated as

P��t� = �
n�

�
m

	�n,m
t 	2, �23�

where n� represents the lines of atomic sites with y�0, is
shown as a function of time in Fig. 8�b�. In the B=0 T case,
both wave packets in K �open circles� and K� �solid� stay in
the strained y�0 region until t�300 fs, when they turn
back into the y�0 region, reflected by the Lorentz force
induced by the strain. However, for B=4.9 T, P� already
approaches zero at t�175 fs for the packet in K� �dashed�,
whereas for K �full circles�, it remains close to 1 even for
large t.

The efficiency of the proposed valley filter is confirmed
by Fig. 9, where we present P� as a function of time for
initial wave packets given by a combination of Gaussians
around the K and K� points in Eq. �21�,

� = ���K� + ���K, �24�

where �K�K�� is the Gaussian wave packet in Eq. �18� with
momentum q� around the K�K�� Dirac point. The results are
presented for three different values of �, where one can eas-
ily see that the probability of finding the packet in the

strained region exhibits a peak at t�80 fs but, as the K� part
of the packet is reflected by the magnetic barrier, this prob-
ability decays, reaching exactly P�=� for large t. Such a
system proves to be a perfect valley filter, which is able to
reflect all the components of the incoming packet that are in
the K� point and transmit a wave packet that is composed
only of particles with momentum in the vicinity of K.

We point out that when a wave packet reaches the edges
of a graphene nanoribbon, it can be scattered to a different
Dirac cone.41 Consequently, the efficiency of the valley filter
could be compromised if one considers a thin nanoribbon, so
that the filtered wave packet could still reach its boundaries
and scatter back to the other valley. In order to avoid such an
effect, we have considered a wide nanoribbon, so that for the
time intervals we study in this work, boundary effects are not
significant.

D. External and pseudomagnetic field effects on
the zitterbewegung

In a previous paper, Rusin and Zawadzki9 used the Dirac
Hamiltonian for graphene to show that the zitterbewegung,
which is transient for B=0, as discussed earlier, is permanent
for B�0. Furthermore, the authors showed that for a Gauss-
ian wave packet, the time evolution of the average value of
the current is different in x and y directions, which they
explain as due to the fact that the Dirac Hamiltonian is not
symmetric in the momenta p̂x and p̂y. Although the same
authors say in their subsequent paper27 that this effect is
unphysical because it violates the rotational symmetry of the
x-y graphene plane, we believe this result is still physical:
one must remember that the Dirac model of graphene comes
from the tight-binding approach for this system, which de-
scribes a honeycomb lattice of atoms that is not symmetric in
the x-y plane by definition, exhibiting C6v symmetry, as men-
tioned in previous section. For each K and K� point, the
coordinates x and y in the Dirac Hamiltonian represent dif-
ferent directions in the real honeycomb lattice of graphene,
where for an infinite sample the x �y� coordinate in the Dirac
equation is related to one of the zigzag �armchair� directions
of the real sample. In this section, we use our TB model of
graphene to extend the previous study of Rusin and
Zawadzki9 to different situations.

We now study the dynamics of a wave packet with width
d=200 Å, pseudospinor c1=1 and c2=1 and initial wave
vector kx

0=ky
0=0, i.e., exactly at one of the Dirac points K and

K� in Eq. �21�, in the presence of an uniform applied external
magnetic field B� =Bẑ, instead of the magnetic field barrier
step considered in the previous subsection. We also consider
a pseudomagnetic field obtained by bending the whole rect-
angular graphene sample into an arc of a circle with radius R,
as illustrated in Fig. 6�a�. The radius of the circle is consid-
ered as R=1 �m, which produces a �4.9 T pseudomag-
netic field, as demonstrated in the previous section. Accord-
ingly, we consider the external uniform magnetic field as
B=4.9 T.

A few experimental techniques have been suggested in the
literature for the observation of zitterbewegung.8,11 An inter-
esting one27 is based on the fact that the wave packet ��r� , t�

FIG. 9. �Color online� Probability of finding the electron in the
filter region y�0, for an initial wave packet given by a combination
of Gaussian distributions around both K and K� Dirac points, for
three different values of the K component of the wave packet �.
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exhibits an electric dipole moment D� �t�= ���r� , t�	r�	��r� , t��
and, consequently, the zitterbewegung yields an oscillation
of this dipole moment, which is a source of electromagnetic
radiation, described classically42 by the equation

���t� =
d2D� �t�

dt2

sin �

4��0s
, �25�

where s and � are the distance and angle of observation,
respectively, and �0 is the vacuum permittivity.

Figure 10 shows the effects of external and strain-induced
magnetic fields on the electric field radiation produced by the
zitterbewegung, written in units of �c=sin � /4��0s. Only
weak oscillations are expected in the armchair �x� direction,
since the pseudospin �1,1�T points in the x direction in the
Dirac model which, as mentioned earlier, is related to the
zigzag �y� direction of the honeycomb lattice. Indeed, in
Figs. 10�a�–10�d�, the x component of the electric field
�dashed� is always close to zero. In Fig. 10�a�, we present the
results in the absence of strain and magnetic fields, for com-
parison. In this case, the oscillations on the electric field are
suppressed for larger time, which is due to the transient char-
acter of the zitterbewegung. Besides, the results for �y �solid�
in the K �thin curves� and K� �thick curves� points have
opposite signs, since for these points the axis of the Dirac
cones are rotated by angles which differ by � /2 difference.
In Fig. 10�b�, the uniformly applied magnetic field
B=4.9 T in an unstrained sample leads to persistent oscilla-
tions in �y, which is related to the discrete Landau-level
spectrum created by this field. Each Landau level that is
populated by the Gaussian distribution contributes with a

different frequency.9 Figure 10�c� shows that such a persis-
tent behavior is also obtained by bending the graphene sheet
into an arc of circle with radius R=1 �m, which produces a
pseudomagnetic field of the same order of magnitude. Notice
that the amplitude of oscillations in this case is four times
smaller than those found in Fig. 10�b� for the unstrained
sample under an external magnetic field. In fact, these two
cases are not expected to produce the same zitterbewegung,
because, although both samples exhibit approximately the
same magnitude of magnetic field, the strained sample has
not only the pseudomagnetic field, but also a different distri-
bution of atomic sites. Thus, in the strained case, there is an
additional change in the direction of the pseudospin polariza-
tion as the wave-packet drifts, due to the lattice distortion
itself. As we have demonstrated in Sec. III A, the zitter-
bewegung strongly depends on the pseudospin polarization
and hence, the different interplay between the strained
atomic sites and the initial pseudospin polarization produces
a different zitterbewegung for the strained case, as compared
to the one of the unstrained sample under an external field.

In Fig. 10�d�, we combine the effects of the R=1 �m
strain and B=4.9 T external field to produce a system where
the magnetic field is practically zero in the K point, but is
nonzero in the K� point, so that only the packet in the K�
point exhibits persistent oscillations. For the K point, the
external field compensates only the effect of the pseudomag-
netic field, namely, the persistent zitterbewegung but it does
not remove the effect of the lattice distortion. As a result,
comparing the results for K �thin curves� in Figs. 10�a� and
10�d�, one observes that the oscillations are transient in both
cases, since there is no effective magnetic field, but they still
exhibit a different oscillation profile at small t, due to the
lattice distortion in the latter case, which is absent in the
former.

IV. CONCLUSION

We presented a study of the dynamics of Gaussian wave
packets in graphene under external and strain-induced mag-
netic fields, where the latter is obtained by bending the
graphene sheet into an arc of a circle. The dependence of the
zitterbewegung on the initial pseudospin of the wave packet
is investigated, and the results obtained by means of the
tight-binding model and the Dirac equation are compared.
We demonstrate that the combination of the pseudomagnetic
field, induced by bending the graphene sheet, along with an
external magnetic field with appropriate strength can be used
as an efficient valley filter. An incoming wave packet com-
posed of momenta around the K and K� Dirac points is scat-
tered such that all its components in one of the Dirac cones
undergoes a strong Lorentz force and are readily reflected,
while the components in the other cone are allowed to pass
through the device with only small distortions in their trajec-
tory, due to the very weak residual Lorentz force.

Our results also show that in the absence of external or
strain-induced magnetic fields, the zitterbewegung is a tran-
sient effect whereas in the presence of any of these fields, the
oscillations persist in time. In a strained sample under an
external magnetic field with the appropriate strength, the ef-

FIG. 10. �Color online� Electromagnetic dipole radiation as a
function of time for wave packets with initial pseudospinor �1,1�T

at K �thin curves� and K� �thick curves�, considering a graphene
sheet �a� in the absence of strain and magnetic fields, �b� under an
uniformly applied magnetic field B=4.9 T, �c� bent into an arc of
circle with radius R=1 �m �see Fig. 6� and �d� with both the uni-
form magnetic field B=4.9 T and the R=1 �m bending. Solid
�dashed� curves are the results for the �y ��x� component.
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fective magnetic field in one of the Dirac cones is enhanced,
whereas in the other cone it is practically cancelled. In this
situation, a permanent zitterbewegung is observed only for
wave packets in one of the Dirac cones. The wave packet
oscillations produce electric field radiation, which can be de-
tected experimentally.

Finally, we believe the present work contributes to a bet-
ter understanding of the relation between the results obtained
from TB and Dirac approaches for graphene and those to be

observed in future experiments on strained graphene-based
structures.
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