toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Drăgan, A.-M.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.; Oprean, R.; Cristea, C.; De Wael, K. pdf  doi
openurl 
  Title Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis Type A1 Journal article
  Year 2023 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 255 Issue Pages 124208-124211  
  Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 mu M and 2.5 mM MA, a LOD of 16.7 mu M, a LOQ of 50.0 mu M and a sensitivity of 5.3 mu A mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography – mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925076200001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.1; 2023 IF: 4.162  
  Call Number UA @ admin @ c:irua:194314 Serial 8890  
Permanent link to this record
 

 
Author Wittner, N.; Vasilakou, K.; Broos, W.; Vlaeminck, S.E.; Nimmegeers, P.; Cornet, I. pdf  doi
openurl 
  Title Investigating the technical and economic potential of solid-state fungal pretreatment at nonsterile conditions for sugar production from poplar wood Type A1 Journal article
  Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Pretreatment is crucial for the conversion of lignocellulose to biofuels. Unlike conventional chemical/physicochemical methods, fungal pretreatment uses white-rot fungi and mild reaction conditions. However, challenges, including substrate sterilization, long duration, and low sugar yields associated with this method, contribute to lower techno-economic performance, an aspect that has rarely been investigated. This study aimed to evaluate the feasibility of fungal pretreatment of nonsterilized poplar wood. Various factors, including inoculum types, fermentation supplements, and cultivation methods, were investigated to optimize the process. A techno-economic assessment of the optimized processes was performed at a full biorefinery scale. The scenario using nonsterilized wood as a substrate, precolonized wood as an inoculum, and a 4 week pretreatment showed a 14.5% reduction in sugar production costs (€2.15/kg) compared to using sterilized wood. Although the evaluation of nonsterilized wood pretreatment showed promising cost reductions, fungal pretreatment remained more expensive than conventional methods due to the significant capital investment required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102138000001 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.2 Times cited Open Access Not_Open_Access: Available from 24.04.2024  
  Notes Approved Most recent IF: 4.2; 2023 IF: 2.843  
  Call Number UA @ admin @ c:irua:200155 Serial 8891  
Permanent link to this record
 

 
Author Drăgan, A.-M. openurl 
  Title Investigation of the electrochemical behaviour of illicit substances and their redox pathways in the development of nanomaterial-modified platforms for decentralized analysis Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 169 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199086 Serial 8892  
Permanent link to this record
 

 
Author Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J. url  doi
openurl 
  Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
  Year 2023 Publication Cell reports physical science Abbreviated Journal  
  Volume 4 Issue 7 Pages 101480-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001048074500001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198299 Serial 8893  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.; Niinemets, Ü.; Schrader, J. url  doi
isbn  openurl
  Title Leaf functional traits : ecological and evolutionary implications Type ME3 Book as editor
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 185 p.  
  Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-2-8325-2086-4; 1664-8714 Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198002 Serial 8894  
Permanent link to this record
 

 
Author De Meyer, S. url  openurl
  Title Macroscopic X-ray powder diffraction in reflection mode : a new technique for chemical imaging of artworks Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 285 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Scientific research into cultural heritage has significantly grown in importance over the past decades. The growing popularity of macroscopic imaging techniques such as X-ray fluorescence or Fourier transform infrared now means that conservators and restorers have access to highly objective information on the chemical composition of a painting without the necessity for destructive sampling. As many works of art are heterogeneous on the macroscopic scale, it is clear that solely relying on microscopic samples does not provide sufficiently representative information on the condition of a painting and that macroscopic imaging techniques should be considered a crucial part of the analytical toolkit for conservation science. The goal of this research has been to investigate the added value of reflection-mode macroscopic X-ray powder diffraction (MA-XRPD) for scientific and art historical investigations of cultural heritage artefacts. A prototype scanner was developed after careful consideration of the individual components. This mobile instrument allows for the analysis of flat objects such as oil paintings with reflection MA-XRPD. In this manner images can be obtained that show the distribution of crystalline components present at the surface of the stratigraphy. These crystalline materials can originate from different sources and include original pigments and non-original pigments. MA-XRPD offers novel insights into original pigments such as ultramarine, copper sulfates and lead white. In Girl with a Pearl Earring by Vermeer the MA-XRPD instrument was used to prove that Vermeer used multiple subtypes of lead white to achieve subtle optical effects while in the painting The Night Watch by Rembrandt the lead white composition was studied in detail; multiple rare lead-based compounds were identified that could be linked to the usage of specific driers in the oil paint. By investigating the presence of degradation products, MA-XRPD can be used to assess the conservation state of an artwork. Secondary alteration products were identified in paintings by Nellius and Mignon, explaining why the paintings had visually deteriorated over time. MA-XRPD registered the presence of lead arsenates which were formed from the original yellow arsenic-based orpiment. By combining microscopic and macroscopic analysis, a chemical degradation pathway for the conversion of the unstable orpiment pigment was proposed. In this manner, MA-XRPD can also be used to provide highly valuable information for conservators and restorers by pinpointing areas that have undergone degradation and to guide sampling campaigns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198766 Serial 8896  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 193 Issue Pages 109257-11  
  Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001067945900001 Publication Date 2023-08-25  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:198183 Serial 8898  
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; De Bock, A.; Ysebaert, T.; Belmans, B.; Denys, S. pdf  url
doi  openurl
  Title Modeling the hygrothermal behavior of green walls in Comsol Multiphysics® : validation against measurements in a climate chamber Type A1 Journal article
  Year 2023 Publication Building and environment Abbreviated Journal  
  Volume 238 Issue Pages 110377-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings  
  Abstract Green walls (GW) can diminish building's surface temperature through shading, insulation, and evapotranspiration mechanisms. These can be analyzed by computer models that account for heat and mass transfer phenomena. However, most previous models were one-dimensional thermal simulations in which boundary conditions (BC), like convective moisture transport, were not or only partly considered. The present work proposes a more comprehensive way to predict GW's hygrothermal behavior by integrating a 3D multiphysics model that couples heat and moisture transport in Comsol Multiphysics®. The air cavity that usually separates the GW from the building was also considered. Heat sink terms were added to represent plants' transpiration and substrates' evaporation, considering the leaf area density (LAD) and substrate's water saturation (Sr). The model was validated against experiments where four green wall-test panels (GW-TPs) were evaluated in a climate chamber under steady-state conditions. This provides a much sounder approach for validation than what currently exists (r = 0.97; RMSE = 0.33 °C). The four GW-TPs decreased the masonry's surface temperature in the range of 0.89–1.14 °C (0.97 ± 0.11 SD °C). The average contribution of the evapotranspiration effect was 30%, whereas the contribution of the air cavity was 60.7 ± 0.09%. The temperature at the substrate's rear was reduced on average by 0.57 ± 0.15 SD °C. When solar radiation was considered as a BC, the GW-TPs decreased the building's surface temperature by 10 °C. Lastly, high values of LAD and Sr translated into increased temperature reduction values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001001412600001 Publication Date 2023-05-02  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.053  
  Call Number UA @ admin @ c:irua:196467 Serial 8899  
Permanent link to this record
 

 
Author Ysebaert, T. openurl 
  Title Modelling and experimental validation of deposition on vegetation to facilitate urban particulate matter mitigation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xxvi, 234 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to air pollution, such as particulate matter (PM), causes adverse health effects, particularly to the respiratory tract and cardiovascular system. PM is the collective name for all kinds of particles ranging from small particles and liquid droplets, which contain organic compounds, acids and metals, to soil or dust particles. One distinguishes PM10, PM2.5 and PM0.1, which have aerodynamic particle sizes smaller than 10, 2.5 and 0.1 µm, respectively. It is mainly the latter that is the most harmful, as PM0.1 penetrates deep into the respiratory system and carries relatively more toxic substances than the other PM fractions. Over a 15-year period, PM concentrations in European member states have fallen by about 30%. Nevertheless, the World Health Organisation (WHO) air quality guidelines, which became stricter in 2021, are exceeded in most places around the world. Particularly in cities, excessive levels of PM are measured and it is here that PM mitigation should be investigated. For this, the implementation of urban green infrastructure, including trees, shrubs, green roofs and green walls, is being looked at. Plants hinder airflow and remove PM from the air by deposition on their leaves and branches. This process is known as dry deposition. Plants can capture PM very efficiently, due to their complex structure of leaves and branches. Green walls offer significant advantages over other types of urban green infrastructure because they can grow on the huge available wall area and, because they do not hinder air circulation, as we sometimes see with trees. Green walls are believed to have a much greater, untapped potential to reduce PM pollution. However, a literature review showed that we do not know the quantitative impact of green walls and lack the tools and/or general methodology to do so. The objective of this thesis is therefore to develop a method for assessing PM removal by green walls, based on predictive models and based on relevant parameters that are experimentally determined. Computational fluid dynamics (CFD) is a numerical method to simulate airflow in complex environments such as cities. These models can also simulate the vegetation-wind interaction in detail and are interesting tools to assess the effect of green walls on PM concentrations in real environments. It is important to first study the aerodynamic effect of green walls and parameterise it correctly in CFD models. Plants decrease the wind speed and create turbulence through a combination of viscous and form drag, which are determined by the permeability (K) and drag coefficient (Cd), respectively. Wind tunnel experiments were conducted with three commonly found climbers (Hedera helix, Parthenocissus tricuspidata and Parthenocissus quinquefolia) and the variation of leaf area density was investigated for two of them. It was observed that the air resistance depended on plant species, leaf area density and wind speed. The difference between the plant species was assigned to the functional leaf size (FLS), the ratio of the largest circle within the boundaries of the leaf to the total leaf area. FLS is likely associated with other morphological characteristics of plants that, when considered collectively, provide a more comprehensive representation of leaf complexity. The pressure and velocity measurements obtained were used to optimise the permeability and drag coefficient in a CFD model. At wind speeds below 0.6 m s-1, the resistance was mainly determined by viscous drag and a larger leaf size resulted in a higher viscous drag. At wind speeds above 1.5 m s-1, form drag was dominant and the parameterised Cd decreased with increasing wind speed due to the sheltering effect of successive plant elements. The leaf area density had a significant effect on K and Cd and, is therefore an important plant parameters in CFD models. The main conclusion here is that the common practice of using a constant Cd to model the influence of plants on the air flow leads to deviations from reality. Wind tunnels are highly suitable to study the impact of green walls on PM concentration under controlled environmental conditions. For this purpose, a new wind tunnel setup was built and great attention was paid to obtaining a uniform air flow. Thus, based on CFD models, appropriate flow controllers were chosen, consisting of honeycombs and screens with different mesh sizes. New PM generation devices and measuring equipment were installed and set up appropriately. Devices were available for generating and measuring ultrafine dust (<0.1 µm, i.e. PM0.1) and fine dust (<0.3 µm, i.e. PM0.3) consisting of soot particles, and, on the other hand, fine dust with particle sizes smaller than 2.5 (PM2.5) and 10 µm (PM10) consisting of 'Arizona fine test dust'. With the new wind tunnel setup, it was possible to measure the influence of Hedera helix (common ivy), grown in a planter against a climbing aid, on the PM concentration and this was expressed by a collection efficiency, i.e. the difference in concentration in front and behind the plants normalised for the incoming concentration. The collection efficiency of H. helix depended on the particle size of the PM and wind speed. The collection efficiency decreased when the particle size increased from 0.02 to 0.2 µm and increased again for particle sizes above 0.3 µm. The collection efficiency also increased with increasing wind speed, especially for particle sizes > 0.03 µm. On the other hand, relative humidity and the type of PM (soot or dust) did not significantly affect the collection efficiency. The main objective of this study was to obtain an optimised size-resolved deposition model. Dry deposition occurs through several mechanisms, in particular gravity, diffusion, impaction and interception, and the subsequent resuspension of deposited PM back to the environment. The modelling of these mechanisms was described by \citet{Zhang2001} and \citet{Petroff2010}. The data obtained from the wind tunnel experiments allowed validating these deposition models. It was for the first time that deposition of real PM on green walls was studied. The different PM deposition mechanisms were found to be strongly dependent on particle size and wind speed. The models of \citet{Zhang2001} and \citet{Petroff2010} each matched PM concentration measurements for only certain particle sizes. Therefore, a combination of the two models was investigated and the root mean square error was lower by on average 3.5% (PM < 0.03 µm) and 46% (PM > 0.03 µm) compared to the original models at wind speeds greater than 1.5 m s-1. For wind speeds less than 1.5 m s-1, the optimised model did not differ from the original models. The optimised model was able to meet the imposed criteria for air quality models, where a correct model exhibits low deviation from measurements ('normalised mean square error' < 1.5), low bias ('fractional bias' between -0.3 and 0.3) and high R2. In comparison, the R$2$ of the optimised model was 0.57, while that of Zhang et al. (2001) and Petroff et al. (2010) was 0.23 and 0.31, respectively. The optimised model was however characterised by a high scatter, with the fraction of modeled results located within a factor of two of the measurements being lower than 50. A model study with a green façade oriented parallel to the incoming airflow showed that deposition by interception and impaction reduced remarkably, but that the orientation had no effect on deposition by Brownian diffusion. A promising green wall form for PM mitigation is the living wall system (LWS). LWS consist of supporting structures with substrate to grow plants in and can be planted with a variety of plant species. This allows to select plant species with optimal characteristics to achieve PM deposition. These characteristics refer to the macro- and microstructure of the leaves, and research has been conducted mainly on these. On the other hand, the influence of the supporting structure and substrate on PM concentrations has rarely been studied. With the new wind tunnel setup, LWS from different manufacturers were tested for their ability to capture PM. The setups were subjected for three hours to an air flow with a low PM concentration (resuspension phase) and then for three hours to an air flow to which additional PM was added (deposition phase). Some setups were able to decrease the PM concentration during both phases, while others just caused the concentration to increase. Some systems were able to reduce particulate matter concentration during both phases, namely LWS consisting of planters (-2% and -4% for PM0.1 and PM2.5, respectively) and textile cloths (-23% and -5% for PM0.1 and PM2.5, respectively). While other systems actually resulted in an increase in concentration especially LWS existing textile fabrics consisting of geotextiles (+11% for both PM fractions) and with moss as substrate (+2% and +5% for PM0.1 and PM2.5, respectively). This highlights the importance of careful selection of suspension systems to reduce particulate matter concentrations. Further research is therefore needed on the materials used in these systems in relation to their particulate content, as well as on plant development in these systems. In addition to air measurements, measurements were taken of the amount of PM deposited on the leaves and suspension system of LWS. This allowed the difference in PM resuspension and deposition between plant species to be investigated. The amount of deposited particulate matter was determined based on 'saturation isothermal remanent magnetisation' (SIRM), a measure of magnetisable particulate matter. This was possible because the added 'Arizona fine test dust' contained iron oxide. However, no significant difference was observed between the SIRM values measured before the wind tunnel experiment, after resuspension and after deposition. This suggested that the iron oxide content in the Arizona fine test dust was too low to measure a significant difference in the SIRM values on leaves after three hours. The plant species did give rise to different SIRM values ranging between 5 and 260 µ A. In particular, SIRM values above 26 µ A were observed for the plant species that were grouped due to their significantly higher accumulation of PM. 'Specific leaf area' (SLA), specifically the ratio of the one-sided 'fresh' leaf area to its dry mass, was the significant leaf characteristic. SLA correlated with leaf complexity. In particular, plant species with elongated leaves were characterized by low SLA, high FLS and high complexity and showed significantly higher SIRM values. Finally, the optimised size-resolved deposition model was also tested in an urban model to get an idea of the impact of a green wall on PM concentrations in a so-called 'street canyon'. These are narrow streets with high buildings on both sides, making air pollution more persistent. To this end, an ideal scenario was tested in which a green wall was introduced along both sides of the street over a length of about 270 m. The model result showed a decrease in PM2.5 and PM10 of 46 ± 12% and 52 ± 14%. This result is of course for a very optimal scenario where the green wall covers the entire building façades. Since this is not feasible in reality, other ways of promoting contact between green walls and polluted air can be explored. The insights obtained illustrate that the use of climbing plants can be a cost-effective and environmentally friendly solution to reduce PM concentrations. Moreover, the findings showed that models can be used to investigate the impact of green walls on PM levels. These findings fit within the broader context of designing healthy and sustainable urban environments and developing innovative solutions based on solid scientific knowledge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199439 Serial 8900  
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K. url  doi
openurl 
  Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
  Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal  
  Volume 28 Issue 16 Pages 6106-6123  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056388600001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6; 2023 IF: 2.861  
  Call Number UA @ admin @ c:irua:199265 Serial 8902  
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 191 Issue Pages 108821-10  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001008428600001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:197397 Serial 8903  
Permanent link to this record
 

 
Author Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumee, L.F. pdf  doi
openurl 
  Title Nanoporous Dealloyed Metal Materials Processing and Applications?A Review Type A1 Journal article
  Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The development of porous metal materials with pore geometries and sizes at the nanoscale offers promising opportunities for the development of smart responsive interfaces for separation and catalytic applications and as building blocks for complex composite materials. Dealloying is an innovative technique based on selective removal of a sacrificial metal from a metal alloy to engineer surface textures and pores across significant thicknesses. Dealloyed structures may be processed over large scales and for a range of source alloys, offering unprecedented manufacturing opportunities. This review presents the operations and challenges of dealloying routes and discusses avenues for process optimizations and improvements, aiming at the development of scalable nanoporous materials. The potential of dealloyed materials for catalytic and sensing applications is expanded and benchmarked against reference materials. Future prospects and applications of dealloyed materials toward surface reactivity control and pore architecture development are highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918107700001 Publication Date 2023-01-13  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.2; 2023 IF: 2.843  
  Call Number UA @ admin @ c:irua:199419 Serial 8904  
Permanent link to this record
 

 
Author Alloul, A.; Moradvandi, A.; Puyol, D.; Molina, R.; Gardella, G.; Vlaeminck, S.E.; De Schutter, B.; Abraham, E.; Lindeboom, R.E.F.; Weissbrodt, D.G. url  doi
openurl 
  Title A novel mechanistic modelling approach for microbial selection dynamics : towards improved design and control of raceway reactors for purple bacteria Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 390 Issue Pages 129844-129849  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple phototrophic bacteria (PPB) show an underexplored potential for resource recovery from wastewater. Raceway reactors offer a more affordable full-scale solution on wastewater and enable useful additional aerobic processes. Current mathematical models of PPB systems provide useful mechanistic insights, but do not represent the full metabolic versatility of PPB and thus require further advancement to simulate the process for technology development and control. In this study, a new modelling approach for PPB that integrates the photoheterotrophic, and both anaerobic and aerobic chemoheterotrophic metabolic pathways through an empirical parallel metabolic growth constant was proposed. It aimed the modelling of microbial selection dynamics in competition with aerobic and anaerobic microbial community under different operational scenarios. A sensitivity analysis was carried out to identify the most influential parameters within the model and calibrate them based on experimental data. Process perturbation scenarios were simulated, which showed a good performance of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001094606700001 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:200035 Serial 8905  
Permanent link to this record
 

 
Author Mulder, J.T.T.; Jenkinson, K.; Toso, S.; Prato, M.; Evers, W.H.H.; Bals, S.; Manna, L.; Houtepen, A.J.J. url  doi
openurl 
  Title Nucleation and growth of bipyramidal Yb:LiYF₄ nanocrystals : growing up in a hot environment Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 14 Pages 5311-5321  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lanthanide-doped LiYF4 (Ln:YLF) is commonlyused fora broad variety of optical applications, such as lasing, photon upconversionand optical refrigeration. When synthesized as nanocrystals (NCs),this material is also of interest for biological applications andfundamental physical studies. Until now, it was unclear how Ln:YLFNCs grow from their ionic precursors into tetragonal NCs with a well-defined,bipyramidal shape and uniform dopant distribution. Here, we studythe nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF),as a template for general Ln:YLF NC syntheses. We show that the formationof bipyramidal Yb:YLF NCs is a multistep process starting with theformation of amorphous Yb:YLF spheres. Over time, these spheres growvia Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLFNCs. We further show that prolonged heating of the NCs results inthe degradation of the NCs, observed by the presence of large LiFcubes and small, irregular Yb:YLF NCs. Due to the similarity in chemicalnature of all lanthanide ions our work sheds light on the formationstages of Ln:YLF NCs in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021474500001 Publication Date 2023-07-03  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the large-scale limit of quantum mechanics). The authors thank Niranjan Saikumar for proof reading the manuscript. Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:197787 Serial 8907  
Permanent link to this record
 

 
Author Faust, V.; Boon, N.; Ganigué, R.; Vlaeminck, S.E.; Udert, K.M. url  doi
openurl 
  Title Optimizing control strategies for urine nitrification : narrow pH control band enhances process stability and reduces nitrous oxide emissions Type A1 Journal article
  Year 2023 Publication Frontiers in environmental science Abbreviated Journal  
  Volume 11 Issue Pages 1275152-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrification is well-suited for urine stabilization. No base dosage is required if the pH is controlled within an appropriate operating range by urine feeding, producing an ammonium-nitrate fertilizer. However, the process is highly dependent on the selected pH set-points and is susceptible to process failures such as nitrite accumulation or the growth of acid-tolerant ammonia-oxidizing bacteria. To address the need for a robust and reliable process in decentralized applications, two different strategies were tested: operating a two-position pH controller (inflow on/off) with a narrow pH control band at 6.20/6.25 (∆pH = 0.05, narrow-pH) vs. a wider pH control band at 6.00/6.50 (∆pH = 0.50, wide-pH). These variations in pH also cause variations in the chemical speciation of ammonia and nitrite and, as shown, the microbial production of nitrite. It was hypothesized that the higher fluctuations would result in greater microbial diversity and, thus, a more robust process. The diversity of nitrifiers was higher in the wide-pH reactor, while the diversity of the entire microbiome was similar in both systems. However, the wide-pH reactor was more susceptible to tested process disturbances caused by increasing pH or temperature, decreasing dissolved oxygen, or an influent stop. In addition, with an emission factor of 0.47%, the nitrous oxide (N2O) emissions from the wide-pH reactor were twice as high as the N2O emissions from the narrow-pH reactor, most likely due to the nitrite fluctuations. Based on these results, a narrow control band is recommended for pH control in urine nitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001087861500001 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2296-665x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199585 Serial 8909  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S. url  doi
openurl 
  Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
  Year 2023 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume 29 Issue 1 Pages 395-407  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033590800038 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 1 Open Access OpenAccess  
  Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891  
  Call Number UA @ admin @ c:irua:198221 Serial 8912  
Permanent link to this record
 

 
Author Scandura, G.; Eid, S.; Alnajjar, A.A.; Paul, T.; Karanikolos, G.N.; Shetty, D.; Omer, K.; Alqerem, R.; Juma, A.; Wang, H.; Arafat, H.A.; Dumee, L.F. url  doi
openurl 
  Title Photo-responsive metal-organic frameworks – design strategies and emerging applications in photocatalysis and adsorption Type A1 Journal article
  Year 2023 Publication Materials Advances Abbreviated Journal  
  Volume 4 Issue 5 Pages 1258-1285  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Stimuli-responsive metal-organic frameworks (MOFs) are highly versatile porous materials with the ability to respond to different external stimuli, including temperature, pressure, pH, and light. The MOF properties can switch reversibly under specific light irradiation, opening the doors to various applications. This review focuses on design strategies to obtain photo-responsive MOFs, namely (i) encapsulation of photo-switchable molecules as guests in MOF porous structures, (ii) fabrication of MOF composites, (iii) post-synthesis modification, and (iv) synthesis of MOFs with photo-responsive ligands. The most recent reports from the literature are herein reviewed and analyzed in terms of material chemistry and performance. Comparisons between the different strategies are performed and future challenges are discussed. The critical aspect of the fatigue of photo-responsive MOFs applied for prolonged cycling of irradiation is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000938241000001 Publication Date 2023-02-24  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199418 Serial 8913  
Permanent link to this record
 

 
Author Borah, R.; Kumar, A.; Samantaray, M.; Desai, A.; Tseng, F.-G. pdf  doi
openurl 
  Title Photothermal heating of Au nanorods and nanospheres : temperature characteristics and strength of convective forces Type A1 Journal article
  Year 2023 Publication Plasmonics Abbreviated Journal  
  Volume 18 Issue 4 Pages 1449-1465  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The nanoscale photothermal effect and the optofluidic convection around plasmonic nanoparticles drive the application of such nanoparticles in micro-environment. In this work, heat transfer and fluid flow around Au nanospheres and nanorods in water medium under continuous and pulsed wave laser irradiance was investigated using an FEM based numerical framework. Au nanospheres of a wide range of diameter: 40 nm = Diameter (D) = 180 nm and relatively large nanorods (diameter: 50 nm) with varying aspect ratio (1 = Aspect ratio (A) = 5) and orientation (0 degrees = ? = 90 degrees, ? = 0 degrees, 90 degrees) with respect to the incident EM radiation were investigated for continuous wave (CW) and pulsed wave laser. It was found that although nanorods can attain much higher temperature than nanospheres, orientation of a nanorod is an important factor to be carefully considered in applications. In micro-scale spherical and hemispherical confinements (diameter < 14.4 p.m), the convective velocity fields around nanoparticles is in the order of 10-9 m/s, with only a weak effect of the slip or no-slip boundary condition on the confining walls. Importantly, the size of the confinement has a strong effect leading to an order of magnitude stronger convection for 14.4 p.m (diameter) spherical confinement as compared to 3.6 p.m confinement. Additionally close proximity of the nanoparticles to the confining walls strongly reduces (by an order of magnitude) the convective currents. The results reported herein provides important insights for the use of photothermal nanoparticles in microscale confined space (e.g. cellular environment) for applications such as optical tweezers, photoporation, etc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985445100001 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1557-1955; 1557-1963 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3; 2023 IF: 2.139  
  Call Number UA @ admin @ c:irua:197380 Serial 8914  
Permanent link to this record
 

 
Author Hofer, C.; Mustonen, K.; Skakalova, V.; Pennycook, T.J. url  doi
openurl 
  Title Picometer-precision few-tilt ptychotomography of 2D materials Type A1 Journal article
  Year 2023 Publication 2D materials Abbreviated Journal  
  Volume 10 Issue 3 Pages 035029-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract From ripples to defects, edges and grain boundaries, the 3D atomic structure of 2D materials is critical to their properties. However the damage inflicted by conventional 3D analysis precludes its use with fragile 2D materials, particularly for the analysis of local defects. Here we dramatically increase the potential for precise local 3D atomic structure analysis of 2D materials, with both greatly improved dose efficiency and sensitivity to light elements. We demonstrate light atoms can now be located in complex 2D materials with picometer precision at doses 30 times lower than previously possible. Moreover we demonstrate this using WS2, in which the light atoms are practically invisible to conventional methods at low doses. The key advance is combining the concept of few tilt tomography with highly dose efficient ptychography in scanning transmission electron microscopy. We further demonstrate the method experimentally with the even more challenging and newly discovered 2D CuI, leveraging a new extremely high temporal resolution camera.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001013151600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.5; 2023 IF: 6.937  
  Call Number UA @ admin @ c:irua:197809 Serial 8915  
Permanent link to this record
 

 
Author De Micco, V.; Amitrano, C.; Mastroleo, F.; Aronne, G.; Battistelli, A.; Carnero-Diaz, E.; De Pascale, S.; Detrell, G.; Dussap, C.-G.; Ganigué, R.; Jakobsen, Ø.M.; Poulet, L.; Van Houdt, R.; Verseux, C.; Vlaeminck, S.E.; Willaert, R.; Leys, N. url  doi
openurl 
  Title Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space Type A1 Journal article
  Year 2023 Publication NPJ microgravity Abbreviated Journal  
  Volume 9 Issue 1 Pages 69-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001093834300001 Publication Date 2023-08-24  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199050 Serial 8916  
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 419 Issue Pages 114156-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987221300001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number UA @ admin @ c:irua:197268 Serial 8917  
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M. doi  openurl
  Title Probing confined vortices with a superconducting nanobridge Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 4 Pages 044073-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000980861100007 Publication Date 2023-04-24  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:197356 Serial 8918  
Permanent link to this record
 

 
Author Friedrich, T. url  openurl
  Title Quantifying atomic structures using neural networks from 4D scanning transmission electron microscopy (STEM) datasets Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 127 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscience and nanotechnologies are of immense importance across many fields of science and for numerous practical applications. In this context, scanning transmission electron microscopy (STEM) and 4D-STEM are among the most powerful characterization methods at the atomic scale. Annular dark-field (ADF)-STEM can be used to quantify atomic structures in 3D by counting atoms based on a single projection image. In 4D-STEM a full diffraction pattern is recorded at each scan step, which enables more dose efficient imaging and the utilization of various advanced imaging modalities, which can however be complex and slow. Both, STEM and 4D-STEM suffer from noise and distortions. In the first section of this work the most important of these distortions are discussed and it is shown how image restoration with a dedicated convolutional neural network (CNN) can be beneficial for atomic structure quantifications in ADF-STEM. In the second part, a new 4D-STEM imaging method real-time-integrated-centre-of-mass (riCOM) is introduced, which is a very dose-efficient and fast algorithm that enables unprecedented live-imaging capabilities for 4D-STEM. It is based on the integrated centre-of-mass approach, but is reformulated with variable integration ranges and optional filters, which allows for a tunable contrast transfer function. This enables the imaging of light and heavy elements simultaneously at very low doses. In the third part another new 4D-STEM method, coined AIRPI (AI-assisted rapid phase imaging) is introduced, which uses a CNN to retrieve a patch of the specimen's phase image for each scan position, based on the diffraction patterns in the probe's immediate surroundings. This allows also live imaging in principle and surpasses comparable state-of-the-art algorithms in terms of resolution also at low doses. Different atomic columns can be reliably distinguished over a wide range of atomic numbers, enabling a very good image interpretability. Further, AIRPI can recover low frequency image components, which preserves thickness information. This is a unique and important feature which could make quantitative 4D-STEM feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196826 Serial 8919  
Permanent link to this record
 

 
Author Monai, M.; Jenkinson, K.; Melcherts, A.E.M.; Louwen, J.N.; Irmak, E.A.; Van Aert, S.; Altantzis, T.; Vogt, C.; van der Stam, W.; Duchon, T.; Smid, B.; Groeneveld, E.; Berben, P.; Bals, S.; Weckhuysen, B.M. pdf  url
doi  openurl
  Title Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis Type A1 Journal article
  Year 2023 Publication Science Abbreviated Journal  
  Volume 380 Issue 6645 Pages 644-651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400 degrees C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600 degrees C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000999020900010 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 29 Open Access OpenAccess  
  Notes This work was supported by BASF and NWO CHIPP (research grant to B.M.W.); the MCEC NWO Gravitation Program (B.M.W.); the ARC-CBBC NWO Program (B.M.W.); the European Research Council (grant 770887 PICOMETRICS to S.V.A.); and the European Research Council (grant 815128 REALNANO to S.B.). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number UA @ admin @ c:irua:197432 Serial 8923  
Permanent link to this record
 

 
Author Zhang, K. file  openurl
  Title Revealing the correlation between titania support properties and propylphosphonic acid modification by in-depth characterization Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XVI, 262 p.  
  Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Grafting organophosphonic acids modification (PAs) on metal oxides has shown to be a flexible technology to tune the surface properties of metal oxides for various applications. Nevertheless, there are still puzzles that need to be addressed, such as the correlations between metal oxides properties (types of surface reactive sites) and the modification (modification degree), the correlations between metal oxides properties and the properties of modified surfaces. Moreover, the currently used liquid-phase method for the grafting has associated impeding effects of solvent on tailoring the modification degrees, and also causes the formation of metal phosphonate side products. The solid-phase method can induce the unwanted changes in crystal phase of supports. Based on these questions, the three titania supports with divergent surface properties were selected as the metal oxides supports investigated, propylphosphonic acid (3PA) modification was carried out under the same synthesis conditions: four different concentrations, two solvents (water or toluene), and one reaction time (4 h) and temperature (90 ). MeOH chemisorption was introduced to probe the surface (un)reactive sites for 3PA modification. On the other hand, MeOH chemisorption and inverse gas chromatography (IGC) were combined to characterize the changes in surface polarity and acidic properties induced by the modification. Next, a solid-phase method, manual grinding, was proposed to graft 3PA on titania, avoiding the impeding effects of solvent on improving modification degree and the formation of the titania phosphonate side products, as well as preserving the crystal phase. The results indicate that methanol chemisorption can qualitatively analyze the surface active sites that are consumed by 3PA modification, its chemisorption capacity shows the consistent trend with the maximum modification degree, hereby revealing the kinds of interactions that are important in controlling surface coverage. Titania supports is found to play an important role in changes in surface polarity and acidic properties by charactering the three modified titania samples at a similar modification degree using the methanol chemisorption coupled with in-situ infrared and thermogravimetric-mass spectrometer, and the IGC. Moreover, IGC provides additional information about the changes in binding modes. Furthermore, grafting 3PA modification on titania was achieved by manual grinding. Compared to the liquid-phase method, the maximum modification degree obtained by the manual grinding is 25 % higher while using 83.3 % or 75.0% lower amounts of expensive 3PA and limiting the formation of titania phosphonate side products. Compared to the reactive milling method, the proposed manual grinding method preserves the crystal phase(s) of titania.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198726 Serial 8924  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Karimi, E.; Padgett, M.J.; Alonso, M.A.; Dennis, M.R.; Dudley, A.; Forbes, A.; Zahedpour, S.; Hancock, S.W.; Milchberg, H.M.; Rotter, S.; Nori, F.; Ozdemir, S.K.; Bender, N.; Cao, H.; Corkum, P.B.; Hernandez-Garcia, C.; Ren, H.; Kivshar, Y.; Silveirinha, M.G.; Engheta, N.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Leykam, D.; Smirnova, D.A.; Rong, K.; Wang, B.; Hasman, E.; Picardi, M.F.; Zayats, A.V.; Rodriguez-Fortuno, F.J.; Yang, C.; Ren, J.; Khanikaev, A.B.; Alu, A.; Brasselet, E.; Shats, M.; Verbeeck, J.; Schattschneider, P.; Sarenac, D.; Cory, D.G.; Pushin, D.A.; Birk, M.; Gorlach, A.; Kaminer, I.; Cardano, F.; Marrucci, L.; Krenn, M.; Marquardt, F. pdf  doi
openurl 
  Title Roadmap on structured waves Type A1 Journal article
  Year 2023 Publication Journal of optics Abbreviated Journal  
  Volume 25 Issue 10 Pages 103001-103079  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological----- structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g. for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001061350200001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.1 Times cited 7 Open Access Not_Open_Access: Available from 30.03.2024  
  Notes This work is funded by the Royal Society and EPSRC under the Grant Number EP/M01326X/1.M A A acknowledges funding from the Excellence Initiative of Aix Marseille University-A*MIDEX, a French Investissements d'Avenir' programme, and from the Agence Nationale de Recherche (ANR) through project ANR-21-CE24-0014-01.M R D acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design(EP/S02297X/1).S R acknowledges support by the Austrian Science Fund (FWF, Grant P32300 WAVELAND) and by the European Commission (Grant MSCA-RISE 691209 NHQWAVE). FN is supported in part by NTT Research, and S K OE by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202.The authors thank their co-workers Yaron Bromberg, Hasan Yilmaz, and collaborators Joerg Bewersdorf and Mengyuan Sun for their contributions to the works presented here. They also acknowledge financial support from the Office of Naval Research (N00014-20-1-2197) and the National Science Foundation (DMR-1905465).H R acknowledges a support from the Australian Research Council DECRA Fellowship DE220101085. Y K acknowledges a support from the Australian Research Council (Grant DP210101292).M G S acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, from the Institution of Engineering and Technology (IET) under the A F Harvey Research Prize 2018, and from Instituto de Telecomunicacoes under project UIDB/50008/2020. N E acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, and from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant number FA9550-21-1-0312.We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 899275 (DAALI) is gratefully acknowledged.D L acknowledges a support from the National Research Foundation, Singapore and A*STAR under its CQT Bridging Grant. D A S acknowledges support from the Australian Research Council (FT230100058).The authors gratefully acknowledge financial support from the Israel Science Foundation (ISF), the U.S. Air Force Office of Scientific Research (FA9550-18-1-0208) through their program on Photonic Metamaterials, the Israel Ministry of Science, Technology and Space. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit(MNF & PU), Technion.This work was supported by the European Research Council projects iCOMM (789340) and Starting Grant ERC-2016-STG-714151-PSINFONI.Our work in this area has been funded by the National Science Foundation, the Office of Naval Research, and the Simons Foundation.This work was supported by the Australian Research Council Discovery Project DP190100406.J V acknowledges funding from the eBEAM Project supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101017720 (FET-Proactive EBEAM), FWO Project G042820N Exploring adaptive optics in transmission electron microscopy' and European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities Grant Agreement No. 823717-ESTEEM3. P S acknowledges the support of the Austrian Science Fund under Project Nr. P29687-N36.; The authors would like to thank their many collaborators including Wangchun Chen, Charles W Clark, Lisa DeBeer-Schmitt, Huseyin Ekinci, Melissa Henderson, Michael Huber, Connor Kapahi, Ivar Taminiau, and Kirill Zhernenkov. The authors would also like to acknowledge their funding sources: the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada First Research Excellence Fund (CFREF).E K acknowledges the support of Canada Research Chairs, Ontario's Early Research Award, and NRC-uOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via the High Throughput and Secure Networks Challenge Program at the National Research Council of Canada. Approved Most recent IF: 2.1; 2023 IF: 1.741  
  Call Number UA @ admin @ c:irua:199327 Serial 8925  
Permanent link to this record
 

 
Author Derks, K. file  openurl
  Title Scanning Michael Sweerts and Michaelina Wautier : uncovering the working methods of 17th-century Brussels artists by means of MA-XRF examination Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 634 p.  
  Keywords Doctoral thesis; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This dissertation focuses on the materials and techniques used by the Brussels artists Michael Sweerts (1618-1664) and Michaelina Wautier (1614-1689). It tries to answer the following research questions: 1.Did 17th-century Brussels-based artists use idiosyncratic painting materials and techniques, and can their work be distinguished from paintings created in other artistic centers based on these materials and techniques? 2.How did Sweerts and Wautier influence each other’s work? In order to answer the research questions, a selection of relevant and representative paintings from Sweerts’ and Wautier’s oeuvre has been studied with MA-XRF scanning and microscopic examination. The results are discussed in volume 2 of this dissertation, and form the basis upon which the chapters in volume 1 are built. MA-XRF scanning is a non-destructive imaging technique based on the technique of X-ray fluorescence (XRF). The technique allows for the collection of elemental information about the materials present in a work of art. The work presented in this dissertation has shed more light on the working methods of Sweerts and Wautier. It has shown they both showed an openness and willingness to continue learning and developing as an artist. Wautier did not feel constrained to work only in one genre and apparently carried on developing her skills throughout her career, as evidenced by Flower Garland with Butterfly. She might have trained with a specialized artist to master their idiosyncratic working methods and this diverse genre. This suggests that Wautier had an interest in art education. Sweerts too had a passion for art education: he was involved in the drawing academy of Camillo Pamphilj in Rome, and later established his own academy for life drawing in Brussels. Sweerts’ work clearly shows the influence of his Italian contemporaries. Whilst living in Rome, he adapted his working methods to local customs such as working on brightly colored grounds. Wautier’s oeuvre shows that she was open to explore different genres and that she took inspiration from her contemporaries, including Theodoor van Loon and Daniël Seghers. In doing so, she furthered the development of different genres as she added original elements to her compositions. It is the conclusion of this dissertation that Michaelina Wautier can thus be considered one of the innovative artists of mid-17th-century Flemish painting, who inspired other artists in the Low Countries, including Michael Sweerts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197182 Serial 8927  
Permanent link to this record
 

 
Author Gielis, J. url  doi
openurl 
  Title Simon Stevin as a central figure in the development of abstract algebra and generic programming Type A1 Journal article
  Year 2023 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 34 Issue 2 Pages 155-168  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Simon Stevin (1548-1620) is mainly known for the decimal system and his Clootkrans proof. His influence is also profound in infinitesimal calculus, mechanics, and even in abstract algebra and today’s conception of polynomials, algorithms, and generic programming. Here we review his influence as assessed in generic programming. According to Dr. Stepanov, one of the most influential researchers in generic programming, Stevin’s work on polynomials can be regarded as the essence of generic programming: an algorithm from one domain can be applied in another similar domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001068714100003 Publication Date 2023-07-11  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access: Available from 08.02.2024  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198000 Serial 8929  
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 474 Issue Pages 145188-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:198652 Serial 8933  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: