toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
  Year (down) 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 193 Issue Pages 109257-11  
  Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001067945900001 Publication Date 2023-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:198183 Serial 8898  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: