|   | 
Details
   web
Records
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.
Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
Year (down) 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume Issue Pages 1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543344800001 Publication Date 2020-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number UA @ admin @ c:irua:169754 Serial 6651
Permanent link to this record
 

 
Author Baskurt, M.; Eren, I.; Yagmurcukardes, M.; Sahin, H.
Title Vanadium dopant- and strain-dependent magnetic properties of single-layer VI₃ Type A1 Journal article
Year (down) 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
Volume 508 Issue Pages 144937-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516818700040 Publication Date 2019-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 10 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387
Call Number UA @ admin @ c:irua:168595 Serial 6652
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S.
Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
Year (down) 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 12 Pages 8634-8639
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000599507100032 Publication Date 2020-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 43 Open Access
Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:175048 Serial 6685
Permanent link to this record
 

 
Author Shekarforoush, S.; Jalali, H.; Yagmurcukardes, M.; Milošević, M.V.; Neek-Amal, M.
Title Optoelectronic properties of confined water in angstrom-scale slits Type A1 Journal article
Year (down) 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 23 Pages 235406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The optoelectronic properties of confined water form one of the most active research areas in the past few years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric constants (epsilon(el)(perpendicular to) and epsilon(diP)(perpendicular to)) of strongly confined water. We reveal that epsilon(perpendicular to el) and epsilon(diP)(perpendicular to) become comparable for water confined in angstrom-scale channels (with a height of less than 15 angstrom) within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both epsilon(e)(l)(perpendicular to) and epsilon(dip)(perpendicular to) is linked to the formation of the ordered structure of ice for h approximate to (7 -7.5) angstrom. The recently measured total dielectric constant epsilon(T)(perpendicular to) of nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical properties of both confined water and GE membranes, and show that the electron energy loss function of confined water strongly differs from that of bulk water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595856100004 Publication Date 2020-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access
Notes ; This work was supported by the Research Foundation – Flanders (FWO). M.Y. gratefully acknowledges his FWO postdoctoral mandate. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:175051 Serial 6695
Permanent link to this record
 

 
Author Yagmurcukardes, M.
Title Stable anisotropic single-layer of ReTe₂ : a first principles prediction Type A1 Journal article
Year (down) 2020 Publication Turkish Journal of Physics Abbreviated Journal
Volume 44 Issue 5 Pages 450-457
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In order to investigate the structural, vibrational, electronic, and mechanical features of single-layer ReTe2 first-principles calculations are performed. Dynamical stability analyses reveal that single-layer ReTe2 crystallize in a distorted phase while its 1H and 1T phases are dynamically unstable. Raman spectrum calculations show that single-layer distorted phase of ReTe2 exhibits 18 Raman peaks similar to those of ReS2 and ReSe2. Electronically, single-layer ReTe2 is shown to be an indirect gap semiconductor with a suitable band gap for optoelectronic applications. In addition, it is found that the formation of Re-units in the crystal induces anisotropic mechanical parameters. The in-plane stiffness and Poisson ratio are shown to be significantly dependent on the lattice orientation. Our findings indicate that single-layer form of ReTe2 can only crystallize in a dynamically stable distorted phase formed by the Re-units. Single-layer of distorted ReTe2 can be a potential in-plane anisotropic material for various nanotechnology applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000585330600004 Publication Date 2020-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1300-0101 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes ; Computational resources were provided by the Scientific and Technological Research Council of Turkey (TUBITAK) Turkish Academic Network and Information Center (ULAKBIM), High Performance and Grid Computing Center (TR-Grid e-Infrastructure) and by Flemish Supercomputer Center (VSC). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174296 Serial 6698
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Ozen, S.; Iyikanat, F.; Peeters, F.M.; Sahin, H.
Title Raman fingerprint of stacking order in HfS2-Ca(OH)(2) heterobilayer Type A1 Journal article
Year (down) 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 20 Pages 205405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using density functional theory-based first-principles calculations, we investigate the stacking order dependence of the electronic and vibrational properties of HfS2-Ca(OH)(2) heterobilayer structures. It is shown that while the different stacking types exhibit similar electronic and optical properties, they are distinguishable from each other in terms of their vibrational properties. Our findings on the vibrational properties are the following: (i) from the interlayer shear (SM) and layer breathing (LBM) modes we are able to deduce the AB' stacking order, (ii) in addition, the AB' stacking type can also be identified via the phonon softening of E-g(I) and A(g)(III) modes which harden in the other two stacking types, and (iii) importantly, the ultrahigh frequency regime possesses distinctive properties from which we can distinguish between all stacking types. Moreover, the differences in optical and vibrational properties of various stacking types are driven by two physical effects, induced biaxial strain on the layers and the layer-layer interaction. Our results reveal that with both the phonon frequencies and corresponding activities, the Raman spectrum possesses distinctive properties for monitoring the stacking type in novel vertical heterostructures constructed by alkaline-earth-metal hydroxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000467387800010 Publication Date 2019-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the Project No. 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:160334 Serial 5226
Permanent link to this record
 

 
Author Kahraman, Z.; Kandemir, A.; Yagmurcukardes, M.; Sahin, H.
Title Single-layer Janus-type platinum dichalcogenides and their heterostructures Type A1 Journal article
Year (down) 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 7 Pages 4549-4557
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Ultrathin two-dimensional Janus-type platinum dichalcogenide crystals formed by two different atoms at opposite surfaces are investigated by performing state-of-the-art density functional theory calculations. First, it is shown that single-layer PtX2 structures (where X = S, Se, or Te) crystallize into the dynamically stable IT phase and are indirect band gap semiconductors. It is also found that the substitutional chalcogen doping in all PtX2 structures is favorable via replacement of surface atoms with a smaller chalcogen atom, and such a process leads to the formation of Janus-type platinum dichalcogenides (XPtY, where X and Y stand for S, Se, or Te) which are novel single-layer crystals. While all Janus structures are indirect band gap semiconductors as their binary analogues, their Raman spectra show distinctive features that stem from the broken out-of-plane symmetry. In addition, it is revealed that the construction of Janus crystals enhances the piezoelectric constants of PtX2 crystals significantly both in the in plane and in the out-of-plane directions. Moreover, it is shown that vertically stacked van der Waals heterostructures of binary and ternary (Janus) platinum dichalcogenides offer a wide range of electronic features by forming bilayer heterojunctions of type-I, type-II, and type-III, respectively. Our findings reveal that Janus-type ultrathin platinum dichalcogenide crystals are quite promising materials for optoelectronic device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459836900071 Publication Date 2019-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. and Z.K. acknowledge financial support from the TUBITAK under the project number 117F095. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). H.S. acknowledges support from Turkiye Bilimler Akademisi-Turkish Academy of Sciences under the GEBIP program. ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:158617 Serial 5229
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sevik, C.; Peeters, F.M.
Title Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study Type A1 Journal article
Year (down) 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory based first-principles calculations, the electronic, vibrational, elastic, and piezoelectric properties of two dynamically stable crystal phases of monolayer Janus MoSTe, namely 1H-MoSTe and 1T'-MoSTe, are investigated. Vibrational frequency analysis reveals that the other possible crystal structure, 1T-MoSTe, of this Janus monolayer does not exhibit dynamical stability. The 1H-MoSTe phase is found to be an indirect band-gap semiconductor while 1T'-MoSTe is predicted as small-gap semiconductor. Notably, in contrast to the direct band-gap nature of monolayers 1H-MoS2 and 1H-MoTe2, 1H-MoSTe is found to be an indirect gap semiconductor driven by the induced surface strains on each side of the structure. The calculated Raman spectrum of each structure shows unique character enabling us to clearly distinguish the stable crystal phases via Raman measurements. The systematic piezoelectric stress and strain coefficient analysis reveals that out-of-plane piezoelectricity appears in 1H-MoSTe and the noncentral symmetric 1T'-MoSTe has large piezoelectric coefficients. Static total-energy calculations show clearly that the formation of 1T'-MoSTe is feasible by using 1T'-MoTe2 as a basis monolayer. Therefore, we propose that the Janus MoSTe structure can be fabricated in two dynamically stable phases which possess unique electronic, dynamical, and piezoelectric properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476687800003 Publication Date 2019-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 128 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161899 Serial 5411
Permanent link to this record
 

 
Author Yagmurcukardes, M.
Title Monolayer fluoro-InSe : formation of a thin monolayer via fluorination of InSe Type A1 Journal article
Year (down) 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 2 Pages 024108
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory-based first-principles calculations, the formation of a thin monolayer structure, namely InSeF, via fluorination of monolayer InSe is predicted. It is shown that strong interaction of F and In atoms leads to the detachment of In-Se layers in monolayer InSe and 1T-like monolayer InSeF structure is formed. Monolayer InSeF is found to be dynamically stable in terms of its phonon band dispersions. In addition, its Raman spectrum is shown to exhibit totally distinctive features as compared to monolayer InSe. The electronic band dispersions reveal that monolayer InSeF is a direct gap semiconductor whose valence and conduction band edges reside at the Gamma point. Moreover, the orientation-dependent linear elastic properties of monolayer InSeF are investigated in terms of the in-plane stiffness and Poisson ratio. It is found that monolayer InSeF displays strong in-plane anisotropy in elastic constants and it is slightly softer material as compared to monolayer InSe. Overall, it is proposed that a thin, direct gap semiconducting monolayer InSeF can be formed by full fluorination of monolayer InSe as a new member of the two-dimensional family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477885700003 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161891 Serial 5423
Permanent link to this record
 

 
Author Nakhaee, M.; Yagmurcukardes, M.; Ketabi, S.A.; Peeters, F.M.
Title Single-layer structures of a100- and b010-Gallenene : a tight-binding approach Type A1 Journal article
Year (down) 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 28 Pages 15798-15804
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a(100)- and b(010)-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a(100)-Gallenene can be very well explained with an orthogonal basis set, while for b(010)-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b(010)-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a(100)-Gallenene nanoribbons are metallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476603700057 Publication Date 2019-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 14 Open Access
Notes ; This work is supported by the Methusalem program of the Flemish government and the FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M. Y.). M. N. is partially supported by BFO (Uantwerpen). ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161881 Serial 5427
Permanent link to this record
 

 
Author Sreepal, V.; Yagmurcukardes, M.; Vasu, K.S.; Kelly, D.J.; Taylor, S.F.R.; Kravets, V.G.; Kudrynskyi, Z.; Kovalyuk, Z.D.; Patane, A.; Grigorenko, A.N.; Haigh, S.J.; Hardacre, C.; Eaves, L.; Sahin, H.; Geim, A.K.; Peeters, F.M.; Nair, R.R.
Title Two-dimensional covalent crystals by chemical conversion of thin van der Waals materials Type A1 Journal article
Year (down) 2019 Publication Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue 9 Pages 6475-6481
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486361900083 Publication Date 2019-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 32 Open Access
Notes ; This work was supported by the Royal Society, the European Research Council (contract 679689 and EvoluTEM 715502), and Engineering and Physical Sciences Research Council, U.K. (EP/N013670/1), The authors acknowledge the use of the facilities at the Henry Royce Institute for Advanced Materials and associated support services. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. acknowledges the Flemish Science Foundation (FWO-Vl) for a postdoctoral fellowship. S.J.H. and D.J.K. acknowledge support from EPSRC (EP/P009050/1) and the NowNANO CDT. ; Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:162818 Serial 5431
Permanent link to this record
 

 
Author Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H.
Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
Year (down) 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 51 Pages 31232-31237
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505632900050 Publication Date 2019-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:165718 Serial 6332
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year (down) 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426483800015 Publication Date 2018-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H.
Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
Year (down) 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 11 Pages 115427
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000427799300006 Publication Date 2018-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Electronic and vibrational properties of PbI2: From bulk to monolayer Type A1 Journal article
Year (down) 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 8 Pages 085431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the dependence of the electronic and vibrational properties of multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A(1g) and E-g, exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction. Moreover, the Raman activity of the A(1g) mode significantly increases with an increasing number of layers due to the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monatomic (linear) chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000442667200008 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. Part of this work was supported by FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153716UA @ admin @ c:irua:153716 Serial 5097
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
Year (down) 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 49 Pages 28302-28309
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453488300053 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:156229 Serial 5210
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Nitrogenated, phosphorated and arsenicated monolayer holey graphenes Type A1 Journal article
Year (down) 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3144-3150
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by a recent experiment that reported the synthesis of a new 2D material nitrogenated holey graphene (C2N) [Mahmood et al., Nat. Commun., 2015, 6, 6486], the electronic, magnetic, and mechanical properties of nitrogenated (C2N), phosphorated (C2P) and arsenicated (C2As) monolayer holey graphene structures are investigated using first-principles calculations. Our total energy calculations indicate that, similar to the C2N monolayer, the formation of the other two holey structures are also energetically feasible. Calculated cohesive energies for each monolayer show a decreasing trend going from the C2N to C2As structure. Remarkably, all the holey monolayers considered are direct band gap semiconductors. Regarding the mechanical properties (in-plane stiffness and Poisson ratio), we find that C2N has the highest in-plane stiffness and the largest Poisson ratio among the three monolayers. In addition, our calculations reveal that for the C2N, C2P and C2As monolayers, creation of N and P defects changes the semiconducting behavior to a metallic ground state while the inclusion of double H impurities in all holey structures results in magnetic ground states. As an alternative to the experimentally synthesized C2N, C2P and C2As are mechanically stable and flexible semiconductors which are important for potential applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000369506000095 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:132313 Serial 4214
Permanent link to this record
 

 
Author Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R.T.; Peeters, F.M.; Zareie, H.M.; Zafer, C.
Title Controlled growth mechanism of poly (3-hexylthiophene) nanowires Type A1 Journal article
Year (down) 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 27 Issue 27 Pages 455604
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both pi-pi stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000386132600003 Publication Date 2016-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 24 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. HS is supported by a FWO Pegasus-Long Marie Curie Fellowship. HS and RTS acknowledge support from TUBITAK through Project No. 114F397. Also, DA is supported by the Scientific Research Project Fund of Ege University (Project Nr: 12GEE011). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:138159 Serial 4350
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Mechanical properties of monolayer GaS and GaSe crystals Type A1 Journal article
Year (down) 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 245407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The mechanical properties of monolayer GaS and GaSe crystals are investigated in terms of their elastic constants: in-plane stiffness (C), Poisson ratio (nu), and ultimate strength (sigma(U)) by means of first-principles calculations. The calculated elastic constants are compared with those of graphene and monolayer MoS2. Our results indicate that monolayer GaS is a stiffer material than monolayer GaSe crystals due to the more ionic character of the Ga-S bonds than the Ga-Se bonds. Although their Poisson ratio values are very close to each other, 0.26 and 0.25 for GaS and GaSe, respectively, monolayer GaS is a stronger material than monolayer GaSe due to its slightly higher sU value. However, GaS and GaSe crystals are found to be more ductile and flexible materials than graphene and MoS2. We have also analyzed the band-gap response of GaS and GaSe monolayers to biaxial tensile strain and predicted a semiconductor-metal crossover after 17% and 14% applied strain, respectively, for monolayer GaS and GaSe. In addition, we investigated how the mechanical properties are affected by charging. We found that the flexibility of single layer GaS and GaSe displays a sharp increase under 0.1e/cell charging due to the repulsive interactions between extra charges located on chalcogen atoms. These charging-controllable mechanical properties of single layers of GaS and GaSe can be of potential use for electromechanical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389503400008 Publication Date 2016-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 108 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through project 114F397. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139229 Serial 4356
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Torun, E.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Mg(OH)2-WS2 van der Waals heterobilayer : electric field tunable band-gap crossover Type A1 Journal article
Year (down) 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 195403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnesium hydroxide [Mg(OH)(2)] has a layered brucitelike structure in its bulk form and was recently isolated as a new member of two-dimensional monolayer materials. We investigated the electronic and optical properties of monolayer crystals of Mg(OH)(2) and WS2 and their possible heterobilayer structure by means of first-principles calculations. It was found that both monolayers of Mg(OH)(2) and WS2 are direct-gap semiconductors and these two monolayers form a typical van der Waals heterostructure with a weak interlayer interaction and a type-II band alignment with a staggered gap that spatially separates electrons and holes. We also showed that an out-of-plane electric field induces a transition from a staggered to a straddling-type heterojunction. Moreover, by solving the Bethe-Salpeter equation on top of single-shot G(0)W(0) calculations, we show that the low-energy spectrum of the heterobilayer is dominated by the intralyer excitons of the WS2 monolayer. Because of the staggered interfacial gap and the field-tunable energy-band structure, the Mg(OH)(2)-WS2 heterobilayer can become an important candidate for various optoelectronic device applications in nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386769400007 Publication Date 2016-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWOPegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. H.S. acknowledges support from Bilim Akademisi – The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138205 Serial 4364
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Senger, R.T.; Sahin, H.
Title Nanoribbons: From fundamentals to state-of-the-art applications Type A1 Journal article
Year (down) 2016 Publication Applied physics reviews Abbreviated Journal Appl Phys Rev
Volume 3 Issue 3 Pages 041302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomically thin nanoribbons (NRs) have been at the forefront of materials science and nanoelectronics in recent years. State-of-the-art research on nanoscale materials has revealed that electronic, magnetic, phononic, and optical properties may differ dramatically when their one-dimensional forms are synthesized. The present article aims to review the recent advances in synthesis techniques and theoretical studies on NRs. The structure of the review is organized as follows: After a brief introduction to low dimensional materials, we review different experimental techniques for the synthesis of graphene nanoribbons (GNRs) with their advantages and disadvantages. In addition, theoretical investigations on width and edge-shape-dependent electronic and magnetic properties, functionalization effects, and quantum transport properties of GNRs are reviewed. We then devote time to the NRs of the transition metal dichalcogenides (TMDs) family. First, various synthesis techniques, E-field-tunable electronic and magnetic properties, and edge-dependent thermoelectric performance of NRs of MoS2 and WS2 are discussed. Then, strongly anisotropic properties, growth-dependent morphology, and the weakly width-dependent bandgap of ReS2 NRs are summarized. Next we discuss TMDs having a T-phase morphology such as TiSe2 and stable single layer NRs of mono-chalcogenides. Strong edge-type dependence on characteristics of GaS NRs, width-dependent Seebeck coefficient of SnSe NRs, and experimental analysis on the stability of ZnSe NRs are reviewed. We then focus on the most recently emerging NRs belonging to the class of transition metal trichalcogenides which provide ultra-high electron mobility and highly anisotropic quasi-1D properties. In addition, width-, edge-shape-, and functionalization-dependent electronic and mechanical properties of blackphosphorus, a monoatomic anisotropic material, and studies on NRs of group IV elements (silicene, germanene, and stanene) are reviewed. Observation of substrate-independent quantum well states, edge and width dependent properties, the topological phase of silicene NRs are reviewed. In addition, H-2 concentration-dependent transport properties and anisotropic dielectric function of GeNRs and electric field and strain sensitive I-V characteristics of SnNRs are reviewed. We review both experimental and theoretical studies on the NRs of group III-V compounds. While defect and N-termination dependent conductance are highlighted for boron nitride NRs, aluminum nitride NRs are of importance due to their dangling bond, electric field, and strain dependent electronic and magnetic properties. Finally, superlattice structure of NRs of GaN/AlN, Si/Ge, G/BN, and MoS2/WS2 is reviewed. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000390443800013 Publication Date 2016-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.667 Times cited 63 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges the support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through Project No. 114F397. F.M.P. was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 13.667
Call Number UA @ lucian @ c:irua:140299 Serial 4457
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Pentagonal monolayer crystals of carbon, boron nitride, and silver azide Type A1 Journal article
Year (down) 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 104303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B2N4 and p-B4N2), and silver azide (p-AgN3) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN3 are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B2N4 and p-B4N2 have negative Poisson's ratio values. On the other hand, the p-AgN3 has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B2N4 are stable, but p-AgN3 and p-B4N2 are vulnerable against vibrational excitations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361636900028 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 79 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge the support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number UA @ lucian @ c:irua:128415 Serial 4223
Permanent link to this record