|
Record |
Links |
|
Author |
Yagmurcukardes, M.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F.M.; Senger, R.T. |
|
|
Title |
Pentagonal monolayer crystals of carbon, boron nitride, and silver azide |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
118 |
Issue |
118 |
Pages |
104303 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B2N4 and p-B4N2), and silver azide (p-AgN3) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN3 are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B2N4 and p-B4N2 have negative Poisson's ratio values. On the other hand, the p-AgN3 has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B2N4 are stable, but p-AgN3 and p-B4N2 are vulnerable against vibrational excitations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000361636900028 |
Publication Date |
2015-09-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979; 1089-7550 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
79 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge the support from TUBITAK through Project No. 114F397. ; |
Approved |
Most recent IF: 2.068; 2015 IF: 2.183 |
|
|
Call Number |
UA @ lucian @ c:irua:128415 |
Serial |
4223 |
|
Permanent link to this record |