|
Record |
Links |
|
Author |
Baskurt, M.; Eren, I.; Yagmurcukardes, M.; Sahin, H. |
|
|
Title |
Vanadium dopant- and strain-dependent magnetic properties of single-layer VI₃ |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Applied Surface Science |
Abbreviated Journal |
Appl Surf Sci |
|
|
Volume |
508 |
Issue |
|
Pages |
144937-6 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000516818700040 |
Publication Date |
2019-12-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0169-4332 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.7 |
Times cited |
10 |
Open Access |
|
|
|
Notes |
; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; |
Approved |
Most recent IF: 6.7; 2020 IF: 3.387 |
|
|
Call Number |
UA @ admin @ c:irua:168595 |
Serial |
6652 |
|
Permanent link to this record |