|
Record |
Links |
|
Author |
Yagmurcukardes, M.; Torun, E.; Senger, R.T.; Peeters, F.M.; Sahin, H. |
|
|
Title |
Mg(OH)2-WS2 van der Waals heterobilayer : electric field tunable band-gap crossover |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
94 |
Issue |
94 |
Pages |
195403 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Magnesium hydroxide [Mg(OH)(2)] has a layered brucitelike structure in its bulk form and was recently isolated as a new member of two-dimensional monolayer materials. We investigated the electronic and optical properties of monolayer crystals of Mg(OH)(2) and WS2 and their possible heterobilayer structure by means of first-principles calculations. It was found that both monolayers of Mg(OH)(2) and WS2 are direct-gap semiconductors and these two monolayers form a typical van der Waals heterostructure with a weak interlayer interaction and a type-II band alignment with a staggered gap that spatially separates electrons and holes. We also showed that an out-of-plane electric field induces a transition from a staggered to a straddling-type heterojunction. Moreover, by solving the Bethe-Salpeter equation on top of single-shot G(0)W(0) calculations, we show that the low-energy spectrum of the heterobilayer is dominated by the intralyer excitons of the WS2 monolayer. Because of the staggered interfacial gap and the field-tunable energy-band structure, the Mg(OH)(2)-WS2 heterobilayer can become an important candidate for various optoelectronic device applications in nanoscale. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000386769400007 |
Publication Date |
2016-11-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9950;2469-9969; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
38 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWOPegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. H.S. acknowledges support from Bilim Akademisi – The Science Academy, Turkey, under the BAGEP program. ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ lucian @ c:irua:138205 |
Serial |
4364 |
|
Permanent link to this record |