|
Record |
Links |
|
Author |
Yagmurcukardes, M.; Ozen, S.; Iyikanat, F.; Peeters, F.M.; Sahin, H. |
|
|
Title |
Raman fingerprint of stacking order in HfS2-Ca(OH)(2) heterobilayer |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
99 |
Issue |
20 |
Pages |
205405 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Using density functional theory-based first-principles calculations, we investigate the stacking order dependence of the electronic and vibrational properties of HfS2-Ca(OH)(2) heterobilayer structures. It is shown that while the different stacking types exhibit similar electronic and optical properties, they are distinguishable from each other in terms of their vibrational properties. Our findings on the vibrational properties are the following: (i) from the interlayer shear (SM) and layer breathing (LBM) modes we are able to deduce the AB' stacking order, (ii) in addition, the AB' stacking type can also be identified via the phonon softening of E-g(I) and A(g)(III) modes which harden in the other two stacking types, and (iii) importantly, the ultrahigh frequency regime possesses distinctive properties from which we can distinguish between all stacking types. Moreover, the differences in optical and vibrational properties of various stacking types are driven by two physical effects, induced biaxial strain on the layers and the layer-layer interaction. Our results reveal that with both the phonon frequencies and corresponding activities, the Raman spectrum possesses distinctive properties for monitoring the stacking type in novel vertical heterostructures constructed by alkaline-earth-metal hydroxides. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000467387800010 |
Publication Date |
2019-05-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
27 |
Open Access |
|
|
|
Notes |
; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the Project No. 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ admin @ c:irua:160334 |
Serial |
5226 |
|
Permanent link to this record |