toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S.
  Title Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
  Year 2010 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 114 Issue 5 Pages 6894-6900
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000276562500002 Publication Date 2010-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 54 Open Access
  Notes Approved Most recent IF: 4.536; 2010 IF: 4.524
  Call Number UA @ lucian @ c:irua:89508 Serial 3757
Permanent link to this record
 

 
Author Misko, V.R.; Fomin, V.M.; Devreese, J.T.; Moshchalkov, V.V.
  Title Vortex states in a mescopic superconducting triangle Type A1 Journal article
  Year 2002 Publication Physica C-Superconductivity And Its Applications Abbreviated Journal Physica C
  Volume 369 Issue Pages 361-365
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000174200000066 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.404 Times cited 14 Open Access
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
  Call Number UA @ lucian @ c:irua:40883 Serial 3885
Permanent link to this record
 

 
Author Misko, V.R.; Fomin, V.M.; Devreese, J.T.
  Title Vortex states in a multi-conoid superconducting nanosized bridge Type A1 Journal article
  Year 2002 Publication Physica C-Superconductivity And Its Applications Abbreviated Journal Physica C
  Volume 369 Issue Pages 356-360
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000174200000065 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.404 Times cited 1 Open Access
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
  Call Number UA @ lucian @ c:irua:40882 Serial 3886
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
  Title Survival of the Dirac points in rippled graphene Type A1 Journal article
  Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
  Volume 100 Issue 25 Pages 256405
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved using a generalization to the honeycomb lattice of the momentum average approximation, which is accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long lifetimes survive near the Dirac points even for very strong couplings.
  Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000257230500047 Publication Date 2008-06-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links
  Impact Factor 8.462 Times cited 15 Open Access
  Notes Approved Most recent IF: 8.462; 2008 IF: 7.180
  Call Number UA @ lucian @ Serial 4010
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J.
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental Materials Abbreviated Journal Dent Mater
  Volume 32 Issue 32 Pages e327-e337
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.
  Address KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Belgium
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000389516400003 Publication Date 2016-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.07 Times cited Open Access
  Notes The authors acknowledge the Research Fund of KU Leu- ven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post- doctoral fellowship (PDM/15/153). We thank M. Peumans for the translucency measurements. Approved Most recent IF: 4.07
  Call Number EMAT @ emat @ c:irua:136821 Serial 4313
Permanent link to this record
 

 
Author Schalm, O.; Crabbé, A.; Storme, P.; Wiesinger, R.; Gambirasi, A.; Grieten, E.; Tack, P.; Bauters, S.; Kleber, C.; Favaro, M.; Schryvers, D.; Vincze, L.; Terryn, H.; Patelli, A.
  Title The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach Type A1 Journal article
  Year 2016 Publication Applied Physics A-Materials Science & Processing Abbreviated Journal Appl Phys A-Mater
  Volume 122 Issue 122 Pages 903
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract Many historical ‘silver’ objects are composed of sterling silver, a silver alloy containing small amounts of copper. Besides the dramatic impact of copper on the corrosion process, the chemical composition of the corrosion layer evolves continuously. The evolution of the surface during the exposure to a Na2S solution was monitored by means of visual observation at macroscopic level, chemical analysis at microscopic level and analysis at the nanoscopic level. The corrosion process starts with the preferential oxidation of copper, forming mixtures of oxides and sulphides while voids are being created beneath the corrosion layer. Only at a later stage, the silver below the corrosion layer is consumed. This results in the formation of jalpaite and at a later stage of acanthite. The acanthite is found inside the corrosion layer at the boundaries of jalpaite grains and as individual grains between the jalpaite grains but also as a thin film on top of the corrosion layer. The corrosion process could be described as a sequence of 5 subsequent surface states with transitions between these states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000384753800033 Publication Date 2016-09-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-8396 ISBN Additional Links
  Impact Factor 1.455 Times cited 9 Open Access
  Notes The authors are grateful for the financial support by the EU-FP7 Grant PANNA No. 282998 and for the opportunity to perform SR-XPS measurements at the NanoESCA beamline of the Elettra storage ring, under the approval of the advisory Committee (Proposal No. 20135164), as well as the opportunity to perform XANES measurements at the DUBBLE beamline of the ESRF storage ring (Proposal No. 26-01-990). The authors are grateful for the financial support by the STIMPRO Project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. Grant of the Agency for Innovation by Science and Technology (IWT). We would also like to thank Peter Van den Haute for the XRD measurements that were performed at the University of Ghent. Approved Most recent IF: 1.455
  Call Number EMAT @ emat @ Serial 4331
Permanent link to this record
 

 
Author N. Gauquelin, E. Benckiser, M. K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.-U. Habermeier, U. Kaiser, B. Keimer, and G. A. Botton
  Title Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices Type A1 Journal Article
  Year 2014 Publication Physical Review B Abbreviated Journal
  Volume 90 Issue Pages 195140
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The interfacial atomic structure of a metallic LaNiO3/LaAlO3 superlattice grown on a LaSrAlO4 substrate was

investigated using a combination of atomically resolved electron energy loss spectroscopy (EELS) at the Al K,

Al L2,3, Sr L2,3, Ni L2,3, La M4,5, and O K edges as well as hybridization mapping of selected features of the O

K-edge fine structure.We observe an additional La1−xSrxAl1−yNiyO3 layer at the substrate-superlattice interface,

possibly linked to diffusion of Al and Sr into the growing film or a surface reconstruction due to Sr segregation.

The roughness of the LaNiO3/LaAlO3 interfaces is found to be on average around one pseudocubic unit cell. The

O K-edge EELS spectra revealed reduced spectral weight of the prepeak derived from Ni-O hybridized states in

the LaNiO3 layers. We rule out oxygen nonstoichiometry of the LaNiO3 layers and discuss changes in the Ni-O

hybridization due to heterostructuring as possible origin.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000345467000003 Publication Date 2014-11-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links
  Impact Factor Times cited 17 Open Access
  Notes Approved Most recent IF: NA
  Call Number EMAT @ emat @ Serial 4544
Permanent link to this record
 

 
Author M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton
  Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
  Year 2014 Publication Applied Physics Letters Abbreviated Journal
  Volume 104 Issue Pages 221909
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000337161700029 Publication Date 2014-06-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links
  Impact Factor Times cited 22 Open Access
  Notes Approved Most recent IF: NA
  Call Number EMAT @ emat @ Serial 4545
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M.
  Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
  Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
  Volume 721 Issue Pages 249-260
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000405252400030 Publication Date 2017-06-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.133 Times cited Open Access Not_Open_Access
  Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133
  Call Number EMAT @ emat @ Serial 4711
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A.
  Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
  Volume 8 Issue 11 Pages 917
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000451316100052 Publication Date 2018-11-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access
  Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553
  Call Number EMAT @ emat @c:irua:155767 Serial 5139
Permanent link to this record
 

 
Author Pramanik, G.; Kvakova, K.; Thottappali, M.A.; Rais, D.; Pfleger, J.; Greben, M.; El-Zoka, A.; Bals, S.; Dracinsky, M.; Valenta, J.; Cigler, P.
  Title Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters Type A1 Journal Article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 13 Issue 23 Pages 10462-10467
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Fluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin–orbit coupling, which in turn shortens the fluorescence decay lifetime (<italic>τ</italic><sup>PL</sup>). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased<italic>τ</italic><sup>PL</sup>upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine. The heavy atom-mediated increase in<italic>τ</italic><sup>PL</sup>is in striking contrast with the HAE and referred to as inverse HAE. Femtosecond and nanosecond transient absorption spectroscopy revealed overcompensation of a slight decrease in lifetime of the transition associated with the Au core (ps) by a large increase in the long-lived triplet state lifetime associated with the Au shell, which contributed to the observed inverse HAE. This unique observation of inverse HAE in gold nanoclusters provides the means to enhance the triplet excited state lifetime.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links
  Impact Factor 7.367 Times cited 7 Open Access OpenAccess
  Notes The authors acknowledge support from GACR project Nr.18- 12533S. G. P. acknowledges support from EUSMI project No. E180200060; J.P. from the Ministry of Education, Youth and Sports of the Czech Republic – Program INTER-EXCELLENCE (LTAUSA19066). Approved Most recent IF: 7.367
  Call Number EMAT @ emat @ Serial 6950
Permanent link to this record
 

 
Author Bagherpour, A.; Baral, P.; Colla, M.-S.; Orekhov, A.; Idrissi, H.; Haye, E.; Pardoen, T.; Lucas, S.
  Title Tailoring Mechanical Properties of a-C:H:Cr Coatings Type A1 Journal Article
  Year 2023 Publication Coatings Abbreviated Journal Coatings
  Volume 13 Issue 12 Pages 2084
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The development of coatings with tunable performances is critical to meet a wide range of technological applications each one with different requirements. Using the plasma-enhanced chemical vapor deposition (PECVD) process, scientists can create hydrogenated amorphous carbon coatings doped with metal (a-C:H:Me) with a broad range of mechanical properties, varying from those resembling polymers to ones resembling diamond. These diverse properties, without clear relations between the different families, make the material selection and optimization difficult but also very rich. An innovative approach is proposed here based on projected performance indices related to fracture energy, strength, and stiffness in order to classify and optimize a-C:H:Me coatings. Four different a-C:H:Cr coatings deposited by PECVD with Ar/C2H2 discharge under different bias voltage and pressures are investigated. A path is found to produce coatings with a selective critical energy release rate between 5–125 J/m2 without compromising yield strength (1.6–2.7 GPa) and elastic limit (≈0.05). Finally, fine-tuned coatings are categorized to meet desired applications under different testing conditions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001136013600001 Publication Date 2023-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Walloon region under the PDR FNRS, C 62/5—PDR/OL 33677636 ; Belgian National Fund for Scientific Research, CDR—J.0113.20 ; National Fund for Scientific Reaserch; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:202390 Serial 8982
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V.
  Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
  Volume 127 Issue 48 Pages 23400-23411
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001116862000001 Publication Date 2023-12-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536
  Call Number EMAT @ emat @c:irua:202124 Serial 8985
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
  Year 2023 Publication Small Abbreviated Journal Small
  Volume 19 Issue 12 Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1613-6810 ISBN Additional Links UA library record
  Impact Factor 13.3 Times cited Open Access Not_Open_Access
  Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643
  Call Number EMAT @ emat @c:irua:200859 Serial 8960
Permanent link to this record
 

 
Author Bercx, M.; Mayda, S.; Depla, D.; Partoens, B.; Lamoen, D.
  Title Plasmonic effects in the neutralization of slow ions at a metallic surface Type A1 Journal Article
  Year 2023 Publication Contributions to Plasma Physics Abbreviated Journal Contrib. Plasma Phys
  Volume Issue Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Secondary electron emission is an important process that plays a significant role in several plasma‐related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliable yield data is critical as input for higher‐scale simulations. Here, we build upon our previous work combining density functional theory calculations with a model originally developed by Hagstrum to extend its application to metallic surfaces. As plasmonic effects play a much more important role in the secondary electron emission mechanism for metals, we introduce an approach based on Poisson point processes to include both surface and bulk plasmon excitations to the process. The resulting model is able to reproduce the yield spectra of several available experimental results quite well but requires the introduction of global fitting parameters, which describe the strength of the plasmon interactions. Finally, we use an in‐house developed workflow to calculate the electron yield for a list of elemental surfaces spanning the periodic table to produce an extensive data set for the community and compare our results with more simplified approaches from the literature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001067651300001 Publication Date 2023-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0863-1042 ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.6 Times cited Open Access Not_Open_Access
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.6; 2023 IF: 1.44
  Call Number EMAT @ emat @c:irua:200330 Serial 8962
Permanent link to this record
 

 
Author Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J.
  Title Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer Type A1 Journal Article
  Year 2023 Publication Nano Letters Abbreviated Journal Nano Lett.
  Volume Issue Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001092787000001 Publication Date 2023-10-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
  Impact Factor 10.8 Times cited Open Access OpenAccess
  Notes J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.). Approved Most recent IF: 10.8; 2023 IF: 12.712
  Call Number EMAT @ emat @c:irua:200590 Serial 8963
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
  Volume 1 Issue 6 Pages 1184-1191
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2771-9855 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S.
  Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
  Volume 127 Issue 47 Pages 23023-23033
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001111637100001 Publication Date 2023-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536
  Call Number EMAT @ emat @c:irua:201671 Serial 8974
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J.
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.
  Volume Issue Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 001174840900001 Publication Date 2024-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.6 Times cited Open Access Not_Open_Access
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466
  Call Number EMAT @ emat @c:irua:204354 Serial 8997
Permanent link to this record
 

 
Author Vlasov, E.; Heyvaert, W.; Ni, B.; Van Gordon, K.; Girod, R.; Verbeeck, J.; Liz-Marzán, L.M.; Bals, S.
  Title High-Throughput Morphological Chirality Quantification of Twisted and Wrinkled Gold Nanorods Type A1 Journal Article
  Year 2024 Publication ACS Nano Abbreviated Journal ACS Nano
  Volume Issue Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links
  Impact Factor 17.1 Times cited Open Access
  Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.) and from MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021-097588 to K.V.G.). Funded by the European Union under Project 101131111 − DELIGHT, JV acknowledges the eBEAM project supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07- 2020: emerging paradigms and communities. Approved Most recent IF: 17.1; 2024 IF: 13.942
  Call Number EMAT @ emat @ Serial 9121
Permanent link to this record
 

 
Author Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y.
  Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
  Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces
  Volume Issue Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links
  Impact Factor 9.5 Times cited Open Access
  Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved Most recent IF: 9.5; 2024 IF: 7.504
  Call Number EMAT @ emat @ Serial 9126
Permanent link to this record
 

 
Author Leinders, G.; Grendal, O.G.; Arts, I.; Bes, R.; Prozheev, I.; Orlat, S.; Fitch, A.; Kvashnina, K.; Verwerft, M.
  Title Refinement of the uranium dispersion corrections from anomalous diffraction Type A1 Journal Article
  Year 2024 Publication Journal of Applied Crystallography Abbreviated Journal J Appl Cryst
  Volume 57 Issue 2 Pages 284-295
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The evolution of the uranium chemical state in uranium compounds, principally in the oxides, is of concern in the context of nuclear fuel degradation under storage and repository conditions, and in accident scenarios. The U–O system shows complicated phase relations between single-valence uranium dioxide (UO<sub>2</sub>) and different mixed-valence compounds (<italic>e.g.</italic>U<sub>4</sub>O<sub>9</sub>, U<sub>3</sub>O<sub>7</sub>and U<sub>3</sub>O<sub>8</sub>). To try resolving the electronic structure associated with unique atomic positions, a combined application of diffraction and spectroscopic techniques, such as diffraction anomalous fine structure (DAFS), can be considered. Reported here is the application of two newly developed routines for assessing a DAFS data set, with the aim of refining the uranium X-ray dispersion corrections. High-resolution anomalous diffraction data were acquired from polycrystalline powder samples of UO<sub>2</sub>(containing tetravalent uranium) and potassium uranate (KUO<sub>3</sub>, containing pentavalent uranium) using synchrotron radiation in the vicinity of the U<italic>L</italic><sub>3</sub>edge (17.17 keV). Both routines are based on an iterative refinement of the dispersion corrections, but they differ in either using the intensity of a selection of reflections or doing a full-pattern (Rietveld method) refinement. The uranium dispersion corrections obtained using either method are in excellent agreement with each other, and they show in great detail the chemical shifts and differences in fine structure expected for tetravalent and pentavalent uranium. This approach may open new possibilities for the assessment of other, more complicated, materials such as mixed-valence compounds. Additionally, the DAFS methodology can offer a significant resource optimization because each data set contains both structural (diffraction) and chemical (spectroscopy) information, which can avoid the requirement to use multiple experimental stations at synchrotron sources.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001208800100008 Publication Date 2024-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1600-5767 ISBN Additional Links UA library record; WoS full record
  Impact Factor 6.1 Times cited Open Access
  Notes FPS Economy, SF-CORMOD; Approved Most recent IF: 6.1; 2024 IF: 2.495
  Call Number EMAT @ emat @c:irua:206011 Serial 9127
Permanent link to this record
 

 
Author Van Gordon, K.; Ni, B.; Girod, R.; Mychinko, M.; Bevilacqua, F.; Bals, S.; Liz‐Marzán, L.M.
  Title Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness Type A1 Journal Article
  Year 2024 Publication Angewandte Chemie International Edition Abbreviated Journal Angew Chem Int Ed
  Volume Issue Pages
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for<italic>L</italic>‐cystine‐directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle‐directed growth, along with quasi‐helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851 ISBN Additional Links
  Impact Factor 16.6 Times cited Open Access
  Notes Ana Sánchez-Iglesias is acknowledged for support in the synthesis of pentatwinned gold nanorods. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.), from MCIN/AEI/10.13039/501100011033 (Grant PID2020- 117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021- 097588 to K.V.G.), and by KU Leuven (C14/22/085). This work has been funded by the European Union under Project 101131111—DELIGHT. Funding for open access charge: Universidade de Vigo/ CRUE-CISUG. Approved Most recent IF: 16.6; 2024 IF: 11.994
  Call Number EMAT @ emat @ Serial 9129
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R.
  Title Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
  Year 2005 Publication Microscopy of Semiconducting Materials Abbreviated Journal
  Volume 107 Issue Pages 303-306
  Keywords (down) A1 Journal article; Electron Microscopy for Materials Science (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title SPRINGER PROCEEDINGS IN PHYSICS Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:72914 Serial 1962
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V.
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater
  Volume 26 Issue 38 Pages 6554-6559
  Keywords (down) A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000343763200004 Publication Date 2014-08-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1521-4095 ISBN Additional Links
  Impact Factor 19.791 Times cited 34 Open Access
  Notes Approved Most recent IF: 19.791; 2014 IF: NA
  Call Number EMAT @ emat @ Serial 4541
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J.
  Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 148 Issue 148 Pages 10-19
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
  Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000345973000002 Publication Date 2014-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 7 Open Access OpenAccess
  Notes Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
  Call Number c:irua:119083 Serial 2672
Permanent link to this record
 

 
Author Turner, S.; Tavernier, S.M.F.; Huyberechts, G.; Bals, S.; Batenburg, K.J.; Van Tendeloo, G.
  Title Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution Type A1 Journal article
  Year 2010 Publication Journal of nanoparticle research Abbreviated Journal J Nanopart Res
  Volume 12 Issue 2 Pages 615-622
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 2030 nm range, separable by a simple ultrasonic treatment step.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos 000275318700025 Publication Date 2009-04-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-0764;1572-896X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.02 Times cited 27 Open Access
  Notes Esteem 026019 Approved Most recent IF: 2.02; 2010 IF: 3.253
  Call Number UA @ lucian @ c:irua:81771 Serial 156
Permanent link to this record
 

 
Author Chen, J.H.; van Dyck, D.; op de Beeck, M.; van Landuyt, J.
  Title Computational comparisons between the conventional multislice method and the third-order multislice method for calculating high-energy electron diffraction and imaging Type A1 Journal article
  Year 1997 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 69 Issue Pages 219-240
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1997YG59500001 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 11 Open Access
  Notes Approved Most recent IF: 2.843; 1997 IF: 1.600
  Call Number UA @ lucian @ c:irua:21416 Serial 455
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J.
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 158 Issue 158 Pages 81-88
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000361574800011 Publication Date 2015-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
  Call Number c:irua:126675 c:irua:126675 Serial 988
Permanent link to this record
 

 
Author Cloetens, P.; Ludwig, W.; Baruchel, J.; van Dyck, D.; van Landuyt, J.; Guigay, J.P.; Schlenker, M.
  Title Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays Type A1 Journal article
  Year 1999 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 75 Issue 19 Pages 2912-2914
  Keywords (down) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000083483900014 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 481 Open Access
  Notes Approved Most recent IF: 3.411; 1999 IF: 4.184
  Call Number UA @ lucian @ c:irua:29643 Serial 1484
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: