toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Electrostrictive behavior of confined water subjected to GPa pressure Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 14 Pages 144111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Water inside a nanocapillary exhibits unconventional structural and dynamical behavior due to its ordered structure. The confining walls, density, and lateral pressures control profoundly the microscopic structure of trapped water. Here we study the electrostriction of confined water subjected to pressures of the order of GPa for two different setups: (i) a graphene nanochannel containing a constant number of water molecules independent of the height of the channel, (ii) an open nanochannel where water molecules can be exchanged with those in a reservoir. For the former case, a square-rhombic structure of confined water is formed when the height of the channel is d = 6.5 angstrom having a density of rho = 1.42 g cm(-3). By increasing the height of the channel, a transition from a flat to a buckled state occurs, whereas the density rapidly decreases and reaches the bulk density for d congruent to 8.5 angstrom. When a perpendicular electric field is applied, the water structure and the lateral pressure change. For strong electric fields (similar to 1 V/angstrom), the square-rhombic structure is destroyed. For an open setup, a solid phase of confined water consisting of an imperfect square-rhombic structure is formed. By applying a perpendicular field, the density and phase of confined water change. However, the density and pressure inside the channel decrease as compared to the first setup. Our study is closely related to recent experiments on confined water, and it reveals the sensitivity of the microscopic structure of confined water to the size of the channel, the external electric field, and the experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos (down) 000430809300002 Publication Date 2018-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Fund for Scientific Research-Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151574UA @ admin @ c:irua:151574 Serial 5023  
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S. pdf  doi
openurl 
  Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
  Year 2018 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 83 Issue 83 Pages 118-125  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (down) 000430767200017 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access  
  Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561  
  Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial 5030  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mozo, I.; Gaval, G.; Caligaris, M.; Barillon, B.; Vlaeminck, S.E.; Sperandio, M. pdf  url
doi  openurl
  Title Enrichment and adaptation yield high anammox conversion rates under low temperatures Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 250 Issue Pages 505-512  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study compared two anammox sequencing batch reactors (SBR) for one year. SBRconstantT was kept at 30 °C while temperature in SBRloweringT was decreased step-wise from 30 °C to 20 °C and 15 °C followed by over 140 days at 12.5 °C and 10 °C. High retention of anammox bacteria (AnAOB) and minimization of competition with AnAOB were key. 5-L anoxic reactors with the same inoculum were fed synthetic influent containing 25.9 mg NH4+-N/L and 34.1 mg NO2−-N/L (no COD). Specific ammonium removal rates continuously increased in SBRconstantT, reaching 785 mg NH4+-N/gVSS/d, and were maintained in SBRloweringT, reaching 82.2 and 91.8 mg NH4+-N/gVSS/d at 12.5 and 10 °C respectively. AnAOB enrichment (increasing hzsA and 16S rDNA gene concentrations) and adaptation (shift from Ca. Brocadia to Ca. Kuenenia in SBRloweringT) contributed to these high rates. Rapidly settling granules developed, with average diameters of 1.2 (SBRconstantT) and 1.6 mm (SBRloweringT). Results reinforce the potential of anammox for mainstream applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430740000062 Publication Date 2017-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148998 Serial 7920  
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Laes, E. pdf  url
doi  openurl
  Title Assessing the success of electricity demand response programs : a meta-analysis Type A1 Journal article
  Year 2018 Publication Energy Research and Social Science Abbreviated Journal  
  Volume 40 Issue 40 Pages 110-117  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract This paper conducts a meta-analysis of 32 electricity demand response programs in the residential sector to understand whether their success is dependent on specific characteristics. The paper analyses several regression models using various combinations of variables that capture the designs of the programs and the socio-economic conditions in which the programs are implemented. The analysis reveals that demand response programs are more likely to succeed in highly urbanized areas, in areas where economic growth rates are high, and in areas where the renewable energy policy is favorable. These findings provide useful guidance in determining where and how to implement future demand response programs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430737800014 Publication Date 2017-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-6296 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:149027 Serial 6154  
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos (down) 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author Al Masud, M.M.; Moni, N.N.; Azadi, H.; Van Passel, S. pdf  url
doi  openurl
  Title Sustainability impacts of tidal river management : towards a conceptual framework Type A1 Journal article
  Year 2018 Publication Ecological Indicators Abbreviated Journal Ecol Indic  
  Volume 85 Issue 85 Pages 451-467  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The Southwest Coastal people of Bangladesh have introduced Tidal River Management (TRM) as an environmentally acceptable water resource management practice based on their indigenous knowledge of water logging of low lying coastal land. TRM helps to address problems resulting from different anthropogenic and structural development activities, and it has been successful in helping coastal communities to adapt to climate change and rising sea level vulnerability by forming new land in Tidal Basins. Hence, it is essential to measure sustainability impacts of TRM from the environmental, socio-economic and institutional perspectives. Therefore, firstly, the study identifies sustainability indicators of TRM considering ecosystem services and secondly, develops an inclusive conceptual framework to understand the important impacts of each indicator at various spatial and temporal scales. The conceptual framework is followed by the construction of a Sustainability Index of Tidal River Management (SITRM). It has advantages over the Ramsar Convention framework (2007) and the World Meteorological Organization (WMO) framework (2012) to measure water sustainability as it includes a sustainable model to project future vulnerability of the community, river and Tidal Basin, emphasizing on climate change issues. It also involves trade-offs analysis, livelihood analysis and SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis for a complete impact assessment to enable decision-makers to focus on those services most likely to be of risks and weaknesses or opportunities and strengths for the sustainability of TRM. Moreover, the framework is a useful guide for policymakers in identifying the sustainability impacts of TRM so that they can choose best coping strategies for coastal people to effectively deal with adverse effects of water-logging and undesired climatic events as well as environmental and socio-economic changes in coastal areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430634500046 Publication Date 2017-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.898 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.898  
  Call Number UA @ admin @ c:irua:149039 Serial 6254  
Permanent link to this record
 

 
Author Rios, P.L.; Perali, A.; Needs, R.J.; Neilson, D. doi  openurl
  Title Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 120 Issue 17 Pages 177701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity. The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors, suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000430547800002 Publication Date 2018-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 11 Open Access  
  Notes ; The authors thank G. Baym, M. Bonitz, and G. Senatore for useful discussions. A. P. and D. N. acknowledge financial support from University of Camerino FAR project CESEMN and from the Italian MIUR through the PRIN 2015 program under Contract No. 2015C5SEJJ001. R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council, U.K., under Grant No. EP/ P034616/1. P. L. R. acknowledges financial support from the Max-Planck Society. Computational resources have been provided by the High Performance Computing Service of the University of Cambridge and by the Max-Planck Institute for Solid State Research. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:150750UA @ admin @ c:irua:150750 Serial 4967  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S. pdf  url
doi  openurl
  Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 15 Pages 4122-4130  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430538000036 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 4 Open Access OpenAccess  
  Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256  
  Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921  
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Janssens, K.; Storme, P. openurl 
  Title A mobile scanner for xrpd-imaging of paintings in transmission and reflection geometry Type P1 Proceeding
  Year 2017 Publication ACTA ARTIS ACADEMICA 2017: PAINTING AS A STORY T2 – 6th Interdisciplinary ALMA Conference, JUN 01-03, 2017, Brno, CZECH REPUBLIC Abbreviated Journal  
  Volume Issue Pages 29-38  
  Keywords P1 Proceeding; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this paper the possibilities and limitations of a non-invasive prototype of macroscopic X-ray powder diffraction scanning device employed in transmission and reflection mode are demonstrated. Contrarily to e.g. macroscopic X-ray fluorescence scanners, which gather information on the elemental level, the prototype instrument allows to obtain information on the crystallographic structure of the components. When applied to cultural heritage artefacts, it becomes possible to identify and localize crystalline pigments. Furthermore, it became clear that different information can be available depending on the geometry of the scanner components. In transmission mode information over the entire stratigraphy of the painting is gathered, which is useful to e.g. identify background substrates and major pigments. On the other hand, reflection-XRPD is a surface-sensitive technique and allows the identification of pigments and degradation products located on the surface. The data acquired during both experiments can be presented as two-dimensional distribution maps which show the spatial distribution of every identified pigment. The complementary nature of transmission and reflectionmode makes it possible to gain more insight into the stratigraphy of the painting which is valuable information for conservation and restoration scientists.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430517600002 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-87108-75-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:189869 Serial 7392  
Permanent link to this record
 

 
Author De Jong, M.; Florea, A.; de Vries, A.-M.; van Nuijs, A.L.N.; Covaci, A.; Van Durme, F.; Martins, J.C.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title Levamisole : a common adulterant in cocaine street samples hindering electrochemical detection of cocaine Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 8 Pages 5290-5297  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The present work investigates the electrochemical determination of cocaine in the presence of levamisole, one of the most common adulterants found in cocaine street samples. Levamisole misleads cocaine color tests, giving a blue color (positive test) even in the absence of cocaine. Moreover, the electrochemical detection of cocaine is also affected by the presence of levamisole, with a suppression of the oxidation signal of cocaine. When levamisole is present in the sample in ratios higher than 1:1, the cocaine signal is no longer detected, thus leading to false negative results. Mass spectrometry and nuclear magnetic resonance were used to investigate if the signal suppression is due to the formation of a complex between cocaine and levamisole in bulk solution. Strategies to eliminate this suppressing effect are further suggested in this manuscript. In a first approach, the increase of the pH of the sample solution from pH 7 to pH 12 allowed the voltammetric determination of cocaine in the presence of levamisole in a concentration range from 10 to 5000 μM at nonmodified graphite disposable electrodes with a detection limit of 5 μM. In a second approach, the graphite electrode was cathodically pretreated, resulting in the presence of oxidation peaks of both cocaine and levamisole, with a detection limit for cocaine of 3 μM over the linear range of concentrations from 10 to 2500 μM. Both these strategies have been successfully applied for the simultaneous detection of cocaine and levamisole in three street samples on unmodified graphite disposable electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430512200049 Publication Date 2018-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 8 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. This work was also supported by BR/314/PI/ APTADRU Project and IOF-SBO (UAntwerp). Alexander van Nuijs acknowledges the Research Foundation-Flanders (FWO) for his postdoctoral fellowship. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:149528 Serial 5693  
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 15 Pages 155424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos (down) 000430459400005 Publication Date 2018-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988  
Permanent link to this record
 

 
Author Kumar, N.; Shaw, P.; Razzokov, J.; Yusupov, M.; Attri, P.; Uhm, H.S.; Choi, E.H.; Bogaerts, A. url  doi
openurl 
  Title Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue 18 Pages 9887-9894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430451800036 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 1 Open Access OpenAccess  
  Notes We gratefully acknowledge nancial support from the Research Foundation – Flanders (FWO), grant numbers 12J5617N, 1200216N and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). We are also thankful to the Plasma Bioscience Research Center at Kwangwoon University for providing the core facilities for the experimental work as well as nancial support by the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Founda Approved Most recent IF: 3.108  
  Call Number PLASMANT @ plasmant @c:irua:149564 Serial 4909  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 257 Issue Pages 266-273  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430401100033 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149975 Serial 8619  
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 271 Issue 271 Pages 10-18  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430369800002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:150463 Serial 5652  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
  Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett  
  Volume 3 Issue 4 Pages 1013-1027  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430369600035 Publication Date 2018-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 56 Open Access OpenAccess  
  Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919  
Permanent link to this record
 

 
Author Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanere, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M. doi  openurl
  Title Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 Type A1 Journal article
  Year 2017 Publication Nature energy Abbreviated Journal Nat Energy  
  Volume 2 Issue 12 Pages 954-962  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g(-1) thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material's instability against O-2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material's maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430218300001 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 55 Open Access Not_Open_Access  
  Notes ; We thank P. Pearce for providing the beta-Li<INF>2</INF>IrO<INF>3</INF> and L. Lemarquis for helping in the DEMS experiment. We are particularly grateful to S. Belin, V. Briois and L. Stievano for helpful discussions on XAS analysis and synchrotron SOLEIL (France) for providing beamtime at the ROCK beamline (financed by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme, reference: ANR-10-EQPX-45). A.J.P and A. I. acknowledge the GdR C(RS) 2 for the workshop organized on a chemometric approach for XAS data analysis. V. Nassif is acknowledged for her help during neutron diffraction experiments performed at Institut Laue Langevin on D1B. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is gratefully acknowledged. This work has been performed with the support of the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116 ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150926 Serial 4962  
Permanent link to this record
 

 
Author Ozen, S.A.; Ozkalayci, F.; Cevik, U.; Van Grieken, R. pdf  doi
openurl 
  Title Investigation of heavy metal distributions along 15m soil profiles using EDXRF, XRD, SEM-EDX, and ICP-MS techniques Type A1 Journal article
  Year 2018 Publication X-ray spectrometry Abbreviated Journal  
  Volume 47 Issue 3 Pages 231-241  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The research of soil contamination by heavy metal is an important field due to its environmental and health implications. The goal was to study the elemental mobility as a function of depth. For this reason, the distribution of heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Sn, and Pb) was investigated along soil profiles up to a depth of 15m at 9 sampling sites in the Nilufer industrial district (Bursa, Turkey). Elemental analyses were done with the Epsilon 5 energy dispersive X-ray fluorescence and inductively coupled plasma mass spectrometry equipment. Particle analysis was performed with a JEOL scanning electron microscope equipped with a Si(Li) X-ray detector. The crystallographic compositions of oxide compounds in soil samples were identified by a Rigaku X-ray diffraction instrument. Different parameters such as the soil's chemical (mineralogical structure, pH, and electrical conductivity) and physical properties (the number of blows, the stiffness index, the liquidity index, the plasticity index, and the water content) were analyzed. To assess the mobility of the heavy metals, diffusion (D) and convection coefficients (?) were calculated with the finite difference method. Convection was determined to dominate the studied region. In addition, the mobility coefficient was determined for each metal. High mobilities were determined for Zn and V, moderate mobilities for Cr, Ni, Cu, and As, and low mobilities were determined for Co and Pb. The results revealed that elements had reached depths of up to 15m, causing irreversible soil contamination that may lead to environmental health issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430188700005 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:150722 Serial 8123  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mercade, M.; Sun, X.Y.; Mozo, I.; Barillon, B.; Gaval, G.; Caligaris, M.; Ruel, S.M.; Vlaeminck, S.E.; Sperandio, M. pdf  doi
openurl 
  Title Short and long term effect of decreasing temperature on anammox activity and enrichment in mainstream granular sludge process Type P1 Proceeding
  Year 2017 Publication Frontiers In Wastewater Treatment And Modelling, Ficwtm 2017 Abbreviated Journal  
  Volume 4 Issue Pages 50-54 T2 - Frontiers International Conference on W  
  Keywords P1 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study investigates the impact of lower temperature on short term and long term (down to 10 degrees C) on a completely anoxic anammox granular sludge process. This is the first time granular sludge Anammox is operated in pure anoxic condition in SBR and at low temperature. Conversion performance, kinetic parameters, sludge characteristics and microbial community were analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430181700008 Publication Date 2017-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-319-58421-8; 978-3-319-58420-1; 978-3-319-58420-1 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151640 Serial 8520  
Permanent link to this record
 

 
Author Sathiya, M.; Jacquet, Q; Doublet, M.L; Karakulina, O.M.; Hadermann, J.; Tarascon, J.-M. pdf  url
doi  openurl
  Title A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv. Energy Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium ion batteries (NIBs) are one of the versatile technologies for lowcost rechargeable batteries. O3-type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5−y SnyO2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single-phase transition from O3 ⇔ P3 at the very end of the oxidation process. Na-ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430163100013 Publication Date 2018-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 21.875 Times cited 28 Open Access OpenAccess  
  Notes M.S. and Q.J. contributed equally to this work. The authors thank Dr. Daniel Alves Dalla Corte and Sujoy Saha for electronic conductivity measurements and Prof. Dominique Larcher for fruitful discussions. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. TGA analysis by Matthieu Courty, LRCS, Amiens, is greatly acknowledged. J.H. and O.M.K. acknowledge funding from FWO Vlaanderen project G040116N. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:149515 Serial 4907  
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 13 Pages 134514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos (down) 000430161500004 Publication Date 2018-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980  
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. pdf  doi
openurl 
  Title Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 4 Pages 2435-2441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430155900034 Publication Date 2018-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 9 Open Access Not_Open_Access  
  Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712  
  Call Number EMAT @ lucian @c:irua:150794 Serial 4923  
Permanent link to this record
 

 
Author Garud, S.; Gampa, N.; Allen, T.G.; Kotipalli, R.; Flandre, D.; Batuk, M.; Hadermann, J.; Meuris, M.; Poortmans, J.; Smets, A.; Vermang, B. doi  openurl
  Title Surface passivation of CIGS solar cells using gallium oxide Type A1 Journal article
  Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 215 Issue 7 Pages 1700826  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se-2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5nm passivation layer show an substantial absolute improvement of 56mV in open-circuit voltage (V-OC), 1mAcm(-2) in short-circuit current density (J(SC)), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430128500015 Publication Date 2018-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access  
  Notes ; The work published in this paper was supported by the European Research Council (ERC) under the Union's Horizon 2020 research and innovation programme (grant agreement No 715027). The authors would also like to thank Dr. Marcel Simor (Solliance) for the CIGS layer fabrication and Prof. Johan Lauwaert (Universtiy of Ghent) for his guidance on DLTS measurements. ; Approved Most recent IF: 1.775  
  Call Number UA @ lucian @ c:irua:150761 Serial 4981  
Permanent link to this record
 

 
Author Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO 2 -Au-CdS photonic crystals Type A1 Journal article
  Year 2018 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 47 Issue Pages 266-274  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The slow photon effect, a structural effect of photonic crystal photocatalyst, is very efficient in the enhancement of photocatalytic reactions. However, slow photons in powdered photonic crystal photocatalyst have rarely been discussed because they are usually randomly oriented when the photocatalytic reaction happens in solution under constant stirring. In this work, for the first time we design a gradient ternary TiO2-Au-CdS photonic crystal based on three-dimensionally ordered macroporous (3DOM) TiO2 as skeleton, Au as electron transfer medium and CdS as active material for photocatalytic H2 production under visible-light. As a result, this gradient ternary photocatalyst is favorable to simultaneously enhance light absorption, extend the light responsive region and reduce the recombination rate of the charge carriers. In particular, we found that slow photons at blue-edge exhibit much higher photocatalytic activity than that at red-edge. The photonic crystal photocatalyst with a macropore size of 250 nm exhibits the highest visible-light H2 production rate of 3.50 mmolh⁻¹g⁻¹ due to the slow photon energy at the blue-edge to significantly enhance the incident photons utilization. This work verifies that slow photons at the blue-edge can largely enhance light harvesting and sheds a light on designing the powdered photonic crystal photocatalyst to promote the photocatalytic H2 production via slow photon effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430057000027 Publication Date 2018-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 33 Open Access OpenAccess  
  Notes B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is financially supported the National KeyR&D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 51502225), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Hubei Provincial Natural Science Foundation (2015CFB516), International Science &Technology Cooperation Program of China (2015DFE52870) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Approved Most recent IF: 12.343  
  Call Number EMAT @ lucian @c:irua:150721 Serial 4924  
Permanent link to this record
 

 
Author Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
  Year 2018 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 47 Issue Pages 8-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000430057000002 Publication Date 2018-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access  
  Notes This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343  
  Call Number EMAT @ lucian @c:irua:150720 Serial 4925  
Permanent link to this record
 

 
Author Pereira, J.R.V.; Tunes, T.M.; De Arruda, A.S.; Godoy, M. pdf  url
doi  openurl
  Title Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies Type A1 Journal article
  Year 2018 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 500 Issue 500 Pages 265-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins S-A = 1 in the sublattice A and S-B = 3/2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, D-i(A) and D-j(B), on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature T-c versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (down) 000430027400025 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 3 Open Access  
  Notes ; The authors acknowledge financial support by the Brazilian agencies CNPq, Brazil, CAPES, Brazil (Grant No. 88881.120851/2016-01) and FAPEMAT, Brazil. ; Approved Most recent IF: 2.243  
  Call Number UA @ lucian @ c:irua:150706UA @ admin @ c:irua:150706 Serial 4985  
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 2400-2413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos (down) 000430023700027 Publication Date 2018-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 85 Open Access OpenAccess  
  Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Maccato, C.; Altantzis, T.; Kaunisto, K.; Gasparotto, A. url  doi
openurl 
  Title Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips Type A1 Journal article
  Year 2018 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume Issue Pages acs.cgd.8b00198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High purity porous ZnO nanopyramids with controllable properties are grown on their tips on

Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen

reaction environment. The system degree of preferential [001] orientation, as well as

nanopyramid size, geometrical shape and density distribution, can be finely tuned by varying the

growth temperature between 300 and 400°C, whereas higher temperatures lead to more compact

systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO

nanostructures based on a self-catalytic vapor-solid (VS) mode is proposed, in order to explain

the evolution of nanostructure morphologies as a function of the adopted process conditions. The

results obtained by a thorough chemico-physical characterization enable to get an improved

control over the properties of ZnO nanopyramids grown by this technique. Taken together, they

are of noticeable importance not only for fundamental research on ZnO nanomaterials with

controlled nano-organization, but also to tailor ZnO functionalities in view of various potential

applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000429508200073 Publication Date 2018-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 6 Open Access OpenAccess  
  Notes This work has been supported by Padova University ex-60% 2015–2017, P-DiSC #03BIRD2016-UNIPD projects and ACTION post-doc fellowship. T. A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Rosa Calabrese (Department of Chemical Sciences, Padova University, Italy) and to Dr. T.-P. Ruoko (Department of Chemistry and Bioengineering, Tampere University of Technology, Finland) for skilful technical support. Approved Most recent IF: 4.055  
  Call Number EMAT @ emat @c:irua:149514 Serial 4904  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Sorée, B. doi  openurl
  Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
  Year 2018 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 31 Issue 5 Pages 1351-1357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000429354100010 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.18 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969  
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 17 Pages 175701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (down) 000429329500001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 10 Pages 6845-6859  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000429286100009 Publication Date 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 35 Open Access OpenAccess  
  Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: