toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Dehhaghi, S.; Choobchian, S.; Ghobadian, B.; Farhadian, H.; Viira, A.-H.; Stefanie, H.I.; Van Passel, S.; Azadi, H. url  doi
openurl 
  Title Five-year development plans of renewable energy policies in Iran : a content analysis Type A1 Journal article
  Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 14 Issue 3 Pages 1501  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Renewable energy (RE) policies can play an effective role in the development of renewable resources. The main goal of this paper was to conduct a content analysis on RE development policies in Iran's five-year National Development Plan (NDP) by investigating upstream national documents. To achieve the goal, 29 upstream documents related to RE were identified and analyzed through a systematic literature review. Then, a qualitative content analysis was applied to analyze the documents. The results showed that Iran's current RE policies need to be reviewed, reformed, and strengthened. For example, lack of sufficient attention to renewable heat and fuel was one of the deficiencies of RE policies in Iran's five-year NDP. The decentralization of policymaking in the unified organization was also one of the weaknesses in the policymaking process of the RE. Iran can develop sustainable and clean RE policies by using sources such as solar, wind, geothermal, hydropower, wave, and tidal power. The paper concludes that, although RE policies have the potential for development in Iran due to environmental, social, and economic advantages, they could face some infrastructural, managerial, socio-cultural, and economic challenges. Accordingly, effective and innovative policymaking is required to meet such challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000754912800001 Publication Date 2022-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:186501 Serial 7358  
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J. pdf  url
doi  openurl
  Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
  Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater  
  Volume 228 Issue 1 Pages 28-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication München Editor  
  Language Wos 000315475900004 Publication Date 2013-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.179 Times cited 9 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808  
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; Van Tendeloo, G.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold coordinated copper Type A1 Journal article
  Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 105 Issue 1 Pages 17003-17005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show the stabilization of a tetragonal rocksalt structure with an elongated c-axis such that c/a similar to 1.34 and the Cu-O-Cu bond angle similar to 180 degrees, pointing to metastable six-fold coordinated Cu. X-ray absorption spectroscopy demonstrates that the hole at the Cu site for the CuO is localized in 3d(x2-y2) orbital unlike the well-studied monoclinic CuO phase. The experimental confirmation of the tetragonal structure of CuO opens up new avenues to explore electronic and magnetic properties of six-fold coordinated Cu. Copyright (C) EPLA, 2014  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000331197100015 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 15 Open Access  
  Notes This work was carried out with financial support from the AFOSR and EOARD projects (project No.: FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No. 246791 – COUNTATOMS, ERC Starting Grant 278510 VORTEX, Grant No. NMP3-LA-2010-246102 IFOX and an Integrated Infrastructure Initiative, reference No. 312483-ESTEEM2. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. YT acknowledges support from the National Science Foundation (DMR-0747896). WS was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. ECASJO_; Approved Most recent IF: 1.957; 2014 IF: 2.095  
  Call Number UA @ lucian @ c:irua:115806UA @ admin @ c:irua:115806 Serial 722  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U. url  doi
openurl 
  Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
  Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1516 Issue 1 Pages 123-134  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000829772300001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:189314 Serial 7131  
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Molegraaf, H.; Kuiper, B.; Siemons, W.; Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Takamura, Y.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Experimental evidence for oxygen sublattice control in polar infinite layer SrCuO2 Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 9 Pages 096102-96105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A recent theoretical study [ Phys. Rev. B 85 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d3z2-r2 orbital, which is different from the planar case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000323610800023 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 29 Open Access  
  Notes This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109452UA @ admin @ c:irua:109452 Serial 1140  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 25 Pages 259702  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305568700038 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.462 Times cited Open Access  
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ admin @ c:irua:100293 Serial 5370  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 107 Issue 10 Pages 107602  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000294406600018 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 115 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:91265 c:irua:91265 c:irua:91265UA @ admin @ c:irua:91265 Serial 5  
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 23 Pages 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471983500006 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161329 Serial 5425  
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W. url  doi
openurl 
  Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 15 Pages 155123-155126  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326087100003 Publication Date 2013-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944  
Permanent link to this record
 

 
Author Boullay, P.; David, A.; Sheets, W.C.; Lüders, U.; Prellier, W.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Gatel, C.; Vincze, G.; Radi, Z. url  doi
openurl 
  Title Microstructure and interface studies of LaVO3/SrVO3 superlattices Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 12 Pages 125403-125403,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and interface characteristics of (LaVO3)6m(SrVO3)m superlattices deposited on a (100)-SrTiO3 substrate were studied using transmission electron microscopy (TEM). Cross-section TEM studies revealed that both LaVO3 (LVO) and SrVO3 (SVO) layers are good single-crystal quality and epitaxially grown with respect to the substrate. It is evidenced that LVO layers are made of two orientational variants of a distorted perovskite compatible with bulk LaVO3, while SVO layers suffers from a tetragonal distortion due to the substrate-induced stain. Electron energy loss spectroscopy investigations indicate changes in the fine structure of the V L23 edge, related to a valence change between the LaVO3 and the SrVO3 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288160300006 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88648UA @ admin @ c:irua:88648 Serial 2054  
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 17 Pages 175701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000429329500001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983  
Permanent link to this record
 

 
Author Jungbauer, M.; Huehn, S.; Egoavil, R.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Moshnyaga, V. pdf  url
doi  openurl
  Title Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 25 Pages 251603  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO3)(n) (n = infinity, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO3(001) substrates by means of a sequential deposition of Sr-O/Ti-O-2 atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2-4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidly decreases and saturates after 5-6 repetitions of the SrO(SrTiO3)(4) block at the level of 2.4%. This identifies the SrTiO3 substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000346914000007 Publication Date 2014-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 32 Open Access  
  Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:122830UA @ admin @ c:irua:122830 Serial 172  
Permanent link to this record
 

 
Author Egoavil, R.; Tan, H.; Verbeeck, J.; Bals, S.; Smith, B.; Kuiper, B.; Rijnders, G.; Koster, G.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale investigation of a PbTiO3/SrRuO3/DyScO3 heterostructure Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 223106-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An epitaxial PbTiO3 thin film grown on self-organized crystalline SrRuO3 nanowires deposited on a DyScO3 substrate with ordered DyO and ScO2 chemical terminations is investigated by transmission electron microscopy. In this PbTiO3/SrRuO3/DyScO3 heterostructure, the SrRuO3 nanowires are assumed to grow on only one type of substrate termination. Here, we report on the structure, morphology, and chemical composition analysis of this heterostructure. Electron energy loss spectroscopy reveals the exact termination sequence in this complex structure. The energy loss near-edge structure of the Ti-L-2,L-3, Sc-L-2,L-3, and O K edges shows intrinsic interfacial electronic reconstruction. Furthermore, PbTiO3 domain walls are observed to start at the end of the nanowires resulting in atomic steps on the film surface. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000320621600070 Publication Date 2013-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Ifox; Esteem2; Countatoms; Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109606UA @ admin @ c:irua:109606 Serial 185  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Shabalovskaya, S.; van Humbeeck, J. url  doi
openurl 
  Title TEM study of the mechanism of Ni ion release from Nitinol wires with original oxides Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 05027,1-05027,6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The surface of commercial Nitinol wires with original oxides and a thickness in the 30-190 nm range was investigated by different state of art TEM techniques. The oxide surface layer was identified as a combination of TiO and TiO2 depending on the processing of the wire. Between the core of the wires and the oxidized surface, an interfacial Ni3Ti nanolayer was observed while Ni nanoparticles are found inside the original oxide. The particle sizes, their distribution in the surface and the Ti-O stoichiometry were deduced from the analysis of the obtained data. Molecular dynamics calculations performed for evaluation of the stability of Ni particles relative to the atomic state revealed that a pure Ni particle has a lower energy than free Ni atoms inside the TiO2 lattice. The obtained results are discussed with respect to surface stability and Ni release in the human body.  
  Address  
  Corporate Author Thesis  
  Publisher Edp Place of Publication Coutaboeuf Editor  
  Language Wos 000274582300092 Publication Date 2009-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81954 Serial 3493  
Permanent link to this record
 

 
Author Wu, L.; Kolmeijer, K.E.; Zhang, Y.; An, H.; Arnouts, S.; Bals, S.; Altantzis, T.; Hofmann, J.P.; Costa Figueiredo, M.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO₂ reduction conditions Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 9 Pages 4835-4844  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu-2.5-Ag-1 electrodes) and C-2 products (maximum of 15.7% for dense Cu-1-Ag-1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000628024200011 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 24 Open Access OpenAccess  
  Notes This work is funded by the Strategic UU-TU/e Alliance project ‘Joint Centre for Chemergy Research’ (budget holder B. M. W.). S. B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S. A. and T. A. acknowledge funding from the University of Antwerp Research fund (BOF). We thank Eric Hellebrand (Faculty of Geosciences, Utrecht University) for the assistance in SEM measurements. Dr Ramon Oord (ARC Chemical Building Blocks Consortium, Faculty of Science, Utrecht University) is acknowledged for assisting with the grazing incidence XRD measurements; sygma Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176723 Serial 6737  
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B. pdf  url
doi  openurl
  Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 3234-3243  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.  
  Address Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369506000106 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 10 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved Most recent IF: 4.123  
  Call Number c:irua:132315 Serial 4000  
Permanent link to this record
 

 
Author Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
  Year 2023 Publication Nature Catalysis Abbreviated Journal  
  Volume 6 Issue 9 Pages 796-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001050367400001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 13 Open Access OpenAccess  
  Notes B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved Most recent IF: 37.8; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:199190 Serial 8877  
Permanent link to this record
 

 
Author Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; Castellanos-Gomez, A.; Peeters, F.M.; Liu, Z.; Hinkle, C.L.; Oh, S.-H.; Ye, P.D.; Koester, S.J.; Lee, Y.H.; Avouris, P.; Wang, X.; Low, T. url  doi
openurl 
  Title Bandgap engineering of two-dimensional semiconductor materials Type A1 Journal article
  Year 2020 Publication npj 2D Materials and Applications Abbreviated Journal  
  Volume 4 Issue 1 Pages 29-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565588500001 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 329 Open Access  
  Notes ; Discussions and interactions with D.R. Reichman, F. Tavazza, N.M.R. Peres, and K. Choudhary are gratefully acknowledged. A.C. acknowledges financial support by CNPq, through the PRONEX/FUNCAP and PQ programs. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 755655, ERCStG 2017 project 2D-TOPSENSE). Computational support from the Minnesota Supercomputing Institute (MSI) and EU Graphene Flagship funding (Grant Graphene Core 2, 785219) is acknowledged. R.F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. D.H., J.Z., and X.W. acknowledge support by National Natural Science Foundation of China 61734003, 61521001, 61704073, 51861145202, and 61851401, and National Key Basic Research Program of China 2015CB921600 and 2018YFB2200500. J.Z. and Z.L. acknowledge support by RG7/18, MOE2017-T2-2-136, MOE2018-T3-1-002, and A*Star QTE program. S.H.S. and Y.H.L. acknowledge the support from IBS-R011-D1. Y.D.K. is supported by Samsung Research and Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04. S.J.K acknowledges financial support by the National Science Foundation (NSF), under award DMR-1921629. T.L. and J.G.A. acknowledge funding support from NSF/DMREF under Grant Agreement No. 1921629. S.-H.O. acknowledges support from the U.S. National Science Foundation (NSF ECCS 1809723) and Samsung Global Research Outreach (GRO) project. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:172069 Serial 6459  
Permanent link to this record
 

 
Author Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E.H. pdf  url
doi  openurl
  Title Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons Type A1 Journal article
  Year 2018 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 10 Issue 10 Pages 974-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C-2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C-2 products. Here, we use boron to tune the ratio of Cu delta+ to Cu-0 active sites and improve both stability and C-2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C-2 products. We report experimentally a C-2 Faradaic efficiency of 79 +/- 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of similar to 40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442395200013 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 700 Open Access OpenAccess  
  Notes ; This work was supported financially by funding from TOTAL S.A., the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-Inspired Solar Energy programme, a University of Toronto Connaught grant, the Ministry of Science, Natural Science Foundation of China (21471040, 21271055 and 21501035), the Innovation-Driven Plan in Central South University project (2017CX003), a project from State Key Laboratory of Powder Metallurgy in Central South University, the Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan and the China Scholarship Council programme. This work benefited from the soft X-ray microcharacterization beamline at CLS, sector 20BM at the APS and the Ontario Centre for the Characterisation of Advanced Materials at the University of Toronto. H.Y. acknowledges financial support from the Research Foundation-Flanders (FWO postdoctoral fellowship). C.Z. acknowledges support from the International Academic Exchange Fund for Joint PhD Students from Tianjin University. P.D.L. acknowledges financial support from the Natural Sciences and Engineering Research Council in the form of the Canada Graduate Scholarship-Doctoral award. S.B. and E.B. acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). The authors thank B. Zhang, N. Wang, C. T. Dinh, T. Zhuang, J. Li and Y. Zhao for fruitful discussions, as well as Y. Hu and Q. Xiao from CLS, and Z. Finfrock and M. Ward from APS for their help during the course of study. Computations were performed on the SOSCIP Consortium's Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. ; ecas_sara Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:153693UA @ admin @ c:irua:153693 Serial 5091  
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H. url  doi
openurl 
  Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
  Year 2020 Publication npj Quantum Materials Abbreviated Journal  
  Volume 5 Issue 1 Pages 49-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551499400001 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171225 Serial 6486  
Permanent link to this record
 

 
Author Quan, L.N.; Ma, D.; Zhao, Y.; Voznyy, O.; Yuan, H.; Bladt, E.; Pan, J.; de Arquer, F.P.G.; Sabatini, R.; Piontkowski, Z.; Emwas, A.-H.; Todorovic, P.; Quintero-Bermudez, R.; Walters, G.; Fan, J.Z.; Liu, M.; Tan, H.; Saidaminov, M., I; Gao, L.; Li, Y.; Anjum, D.H.; Wei, N.; Tang, J.; McCamant, D.W.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.; Bakr, O.M.; Lu, Z.-H.; Sargent, E.H. url  doi
openurl 
  Title Edge stabilization in reduced-dimensional perovskites Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 170  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 +/- 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m(-2); their maximum luminance is 4.5 x 10(4) cd m(-2) (corresponding to an EQE of 5%); and, at 4000 cd m(-2), they achieve an operational half-lifetime of 3.5 h.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551458200001 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 147 Open Access OpenAccess  
  Notes ; This publication is based in part on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund (ORF), by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and by the US Department of Navy, Office of Naval Research (Grant Award No. N00014-17-12524). H.Y. acknowledges the Research Foundation-Flanders (FWO Vlaanderen) for a postdoctoral fellowship. E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #815128-REALNANO). M.B.J.R. and J.H. acknowledge the Research Foundation-Flanders (FWO, Grants G.0962.13, G.0B39.15, AKUL/11/14 and G0H6316N), KU Leuven Research Fund (C14/15/053) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreement No. [307523], ERC-Stg LIGHT to M.B.J.R. DFT calculations were performed on the IBM BlueGene Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). M.I.S. acknowledges the Banting Postdoctoral Fellowship program from the Natural Sciences and Engineering Research Council of Canada (NSERC). H.T. acknowledges the Netherlands Organisation for Scientific Research (NWO) for a Rubicon grant (680-50-1511). ; sygma Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171327 Serial 6496  
Permanent link to this record
 

 
Author Du, K.; Zhang, M.; Dai, C.; Zhou, Z.N.; Xie, Y.W.; Ren, Z.H.; Tian, H.; Chen, L.Q.; Van Tendeloo, G.; Zhang, Z. url  doi
openurl 
  Title Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 10 Pages 4864  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Topological structures based on controllable ferroelectric or ferromagnetic domain configurations offer the opportunity to develop microelectronic devices such as high-density memories. Despite the increasing experimental and theoretical insights into various domain structures (such as polar spirals, polar wave, polar vortex) over the past decade, manipulating the topological transformations of polar structures and comprehensively understanding its underlying mechanism remains lacking. By conducting an in-situ non-contact bias technique, here we systematically investigate the real-time topological transformations of polar structures in PbTiO3/SrTiO3 multilayers at an atomic level. The procedure of vortex pair splitting and the transformation from polar vortex to polar wave and out-of-plane polarization are observed step by step. Furthermore, the redistribution of charge in various topological structures has been demonstrated under an external bias. This provides new insights for the symbiosis of polar and charge and offers an opportunity for a new generation of microelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000492835100002 Publication Date 2019-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:164681 Serial 6307  
Permanent link to this record
 

 
Author Becker, M.; Guzzinati, G.; Béché, A.; Verbeeck, J.; Batelaan, H. url  doi
openurl 
  Title Asymmetry and non-dispersivity in the Aharonov-Bohm effect Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 10 Pages 1700  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464338100011 Publication Date 2019-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 12 Open Access OpenAccess  
  Notes ; H.B. would like to thank Michael Berry for bringing the presence of a quantum “force” to our attention. A.B., G.G. and J.V. acknowledge support from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. G.G. acknowledges support from the Fonds Wetenschappelijk Onderzoek -Vlaanderen (FWO). M.B. and H.B. acknowledge support by the U.S. National Science Foundation under Grant No. 1602755. ; Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:159341 Serial 5241  
Permanent link to this record
 

 
Author Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Dharanipragada, N.V.R.A.; Longo, A.; Meledina, M.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Type A1 Journal article
  Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 8 Issue 7 Pages 5983-5995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a MgFexAl2-xO4 synthetic spinel, where x varies from 0 to 0.26, as support for Ni-based catalysts, offering stability and carbon control under various conditions of methane reforming. By incorporation of Fe into a magnesium aluminate spine!, a support is created with redox functionality and high thermal stability, as concluded from temporal analysis of products (TAP) experiments and redox cycling, respectively. A diffusion coefficient of 3 x 10(-17) m(2) s(-1) was estimated for lattice oxygen at 993 K from TAP experiments. X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) modeling identified that the incorporation of iron occurs as Fe3+ in the octahedral sites of the spinel lattice, replacing aluminum. Simulation of the X-ray absorption near edge structure (XANES) spectrum of the reduced support showed that 60 +/- 10% of iron was reduced from 3+ to 2+ at 1073 K, while there was no formation of metallic iron. A series of Ni/MgFexAl2-xO4 catalysts, where x varies from 0 to 0.26, was synthesized and reduced, yielding a supported Ni-Fe alloy. The evolution of the catalyst structure during H-2 temperature-programmed reduction (TPR) and CO2 temperature-programmed oxidation (TPO) was examined using time-resolved in situ XRD and XANES. During reforming, iron in both the support and alloy keeps control of carbon accumulation, as confirmed by O-2-TPO on the spent catalysts. By fine tuning the amount of Fe in MgFexAl2-xO4, a supported alloy was obtained with a Ni/Fe molar ratio of similar to 10, which was active for reforming and stable. By comparison of the performance of Ni-based catalysts with Fe either incorporated into or deposited onto the support, the location of Fe within the support proved crucial for the stability and carbon mitigation under reforming conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438475100034 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the FAST industrialization by Catalyst Research and Development (FASTCARD) project, which is a Large Scale Collaborative Project supported by the European Commission in the 7th Framework Programme (GA no 604277), the “Long Term Structural Methusalem Funding by the Flemish Government”, the Interuniversity Attraction Poles Programme, IAP7/5, Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of travel costs and beam time at the DUBBLE beamline of the ESRF. The authors acknowledge the assistance from the DUBBLE (ESRF, XAS campaign 26-01-1048) and ROCK staff (SOLEIL, proposal 201502561). The authors equally acknowledge support from a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” program (reference: ANR-10-EQPX-45) for the ROCK beamline and from Lukas Buelens and Rakesh Batchu (Laboratory for Chemical Technology, Ghent University) for the STEM measurements and TAP experiments, respectively. ; Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:153178 Serial 5102  
Permanent link to this record
 

 
Author Yang, S.; Liu, Z.; An, H.; Arnouts, S.; de Ruiter, J.; Rollier, F.; Bals, S.; Altantzis, T.; Figueiredo, M.C.; Filot, I.A.W.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Near-unity electrochemical CO₂ to CO conversion over Sn-doped copper oxide nanoparticles Type A1 Journal article
  Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 12 Issue 24 Pages 15146-15156  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic electrocatalysts have emerged as a viable strategy to tune the electrocatalytic CO2 reduction reaction (eCO2RR) for the selective production of valuable base chemicals and fuels. However, obtaining high product selectivity and catalyst stability remain challenging, which hinders the practical application of eCO2RR. In this work, it was found that a small doping concentration of tin (Sn) in copper oxide (CuO) has profound influence on the catalytic performance, boosting the Faradaic efficiency (FE) up to 98% for carbon monoxide (CO) at -0.75 V versus RHE, with prolonged stable performance (FE > 90%) for up to 15 h. Through a combination of ex situ and in situ characterization techniques, the in situ activation and reaction mechanism of the electrocatalyst at work was elucidated. In situ Raman spectroscopy measurements revealed that the binding energy of the crucial adsorbed *CO intermediate was lowered through Sn doping, thereby favoring gaseous CO desorption. This observation was confirmed by density functional theory, which further indicated that hydrogen adsorption and subsequent hydrogen evolution were hampered on the Sn-doped electrocatalysts, resulting in boosted CO formation. It was found that the pristine electrocatalysts consisted of CuO nanoparticles decorated with SnO2 domains, as characterized by ex situ high-resolution scanning transmission electron microscopy and X-ray photoelectron spectroscopy measurements. These pristine nanoparticles were subsequently in situ converted into a catalytically active bimetallic Sn-doped Cu phase. Our work sheds light on the intimate relationship between the bimetallic structure and catalytic behavior, resulting in stable and selective oxide-derived Sn-doped Cu electrocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000900052400001 Publication Date 2022-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 16 Open Access OpenAccess  
  Notes B.M.W., S.Y., M.C.F., E.J.M.H., and W.v.d.S. acknowledge support from the Strategic UU-TU/e Alliance project ?Joint Centre for Chemergy Research?. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO) . Z.L. acknowledges financial support of the China Scholarship Council and the Netherlands Organization for Scientific Research for access to computa-tional resources for carrying out the DFT calculations reported in this work. S.A. and T.A. acknowledge funding from theUniversity of Antwerp Research fund (BOF) . The authors also thank Dr. Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, Utrecht University) for helpful technical support. Sander Deelen (Faculty of Science, Utrecht University) is acknowledged for the design of the in situ XRD cell. Approved Most recent IF: 12.9  
  Call Number UA @ admin @ c:irua:192742 Serial 7325  
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res  
  Volume 55 Issue 55 Pages 5911-5922  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000376825300013 Publication Date 2016-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:134214 Serial 4158  
Permanent link to this record
 

 
Author Ramachandran, R.K.; Filez, M.; Solano, E.; Poelman, H.; Minjauw, M.M.; Van Daele, M.; Feng, J.-Y.; La Porta, A.; Altantzis, T.; Fonda, E.; Coati, A.; Garreau, Y.; Bals, S.; Marin, G.B.; Detavernier, C.; Dendooven, J. url  doi
openurl 
  Title Chemical and Structural Configuration of Pt Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 31 Pages 9673-9683  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Pt doped semiconducting metal oxides and Pt metal clusters embedded in an oxide matrix are of interest for applications such as catalysis and gas sensing, energy storage and memory devices. Accurate tuning of the dopant level is crucial for adjusting the properties of these materials. Here, a novel atomic layer deposition (ALD) based method for doping Pt into In2O3 in specific, and metals in metal oxides in general, is demonstrated. This approach combines alternating exposures of Pt and In2O3 ALD processes in a single ‘supercycle’, followed by supercycle repetition leading to multilayered nanocomposites. The atomic level control of ALD and its conformal nature make the method suitable for accurate dopant control even on high surface area supports. Oxidation state, local structural environment and crystalline phase of the embedded Pt dopants were obtained by means of X-ray characterization methods and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, this approach allows characterization of the nucleation stages of metal ALD processes, by stacking those states multiple times in an oxide matrix. Regardless of experimental conditions, a few Pt ALD cycles leads to the formation of oxidized Pt species due to their highly dispersed nature, as proven by X-ray absorption spectroscopy (XAS). Grazing-incidence small-angle X-ray scattering (GISAXS) and highresolution scanning transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (HR-STEM/EDXS) show that Pt is evenly distributed in the In2O3 metal oxide matrix without the formation of clusters. For a larger number of Pt ALD

cycles, typ. > 10, the oxidation state gradually evolves towards fully metallic, and metallic Pt clusters are obtained within the In2O3 metal oxide matrix. This work reveals how tuning of the ALD supercycle approach for Pt doping allows controlled engineering of the Pt compositional and structural configuration within a metal oxide matrix.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502418000010 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes This research was supported by the Flemish Research Foundation (FWO-Vlaanderen), the Flemish Government (Long term structural funding – Methusalem funding and Medium scale research infrastructure funding-Hercules funding), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the CALIPSO Trans National Access Program funded by the European Commission in supplying financing of travel costs. We are grateful to the SIXS and SAMBA-SOLEIL staff for smoothly running the beamline facilities. J.D. and R.K.R. are postdoctoral fellows of the FWO. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:164056 Serial 5380  
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J. pdf  url
doi  openurl
  Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823205700001 Publication Date 2022-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved no  
  Call Number UA @ admin @ c:irua:189541 Serial 8928  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Shabalovskaya, S.; van Humbeeck, J. url  doi
openurl 
  Title Microstructure of surface and subsurface layers of a Ni-Ti shape memory microwire Type A1 Journal article
  Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 15 Issue Pages 62-70  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructure of a 55 Êm diameter, cold-worked Ni-Ti microwire is investigated by different transmission electron microscopy techniques. The surface consists of a few hundred nanometer thick oxide layer composed of TiO and TiO2 with a small fraction of inhomogeneously distributed Ni. The interior of the wire has a core-shell structure with primarily B2 grains in the 1 Êm thick shell, and heavily twinned B19 martensite in the core. This core-shell structure can be explained by a concentration gradient of the alloying elements resulting in a structure separation due to the strong temperature dependence of the martensitic start temperature. Moreover, in between the B2 part of the metallic core-shell and the oxide layer, a Ni3Ti interfacial layer is detected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000262912700009 Publication Date 2009-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 15 Open Access  
  Notes FWO G.0465.05; Multimat Approved Most recent IF: 1.891; 2009 IF: 3.035  
  Call Number UA @ lucian @ c:irua:72319 Serial 2074  
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M. pdf  url
doi  openurl
  Title Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 381 Issue 381 Pages 179-187  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000349361100027 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 20 Open Access  
  Notes 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970  
  Call Number c:irua:125284 c:irua:125284 Serial 1049  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: