toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Bafekry, A.; Nguyen, C.; Obeid, M.M.; Ghergherehchi, M. url  doi
openurl 
  Title Modulating the electro-optical properties of doped C₃N monolayers and graphene bilayersviamechanical strain and pressure Type A1 Journal article
  Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 44 Issue 36 Pages 15785-15792  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we investigated systematically the electronic and optical properties of B doped C3N monolayers as well as B and N doped graphene bilayers (BN-Gr@2L). We found that the doping of B atoms leads to an enlarged band gap of the C3N monolayer and when the dopant concentration reaches 12.5%, an indirect-to-direct band gap switching occurs. In addition, with co-doping of B and N atoms on the graphene monolayer in the hexagonal configuration, an electronic transition from semi-metal to semiconductor occurs. Our optical results for B-C3N show a broad absorption spectrum in a wide visible range starting from 400 nm to 1000 nm with strong absorption intensity, making it a suitable candidate for nanoelectronic and optoelectronic applications. Interestingly, a transition from semi-metal to semiconductor emerges in the graphene monolayer with doping of B and N atoms. Furthermore, our results demonstrate that the in-plane strain and out-of-plane strain (pressure) can modulate the band gap of the BN-Gr@2L. The controllable electronic properties and optical features of the doped graphene bilayer by strain engineering may facilitate their practical performance for various applications in future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571972400054 Publication Date 2020-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 7 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 3.269  
  Call Number UA @ admin @ c:irua:171936 Serial 6561  
Permanent link to this record
 

 
Author Payne, L.M.; Albrecht, W.; Langbein, W.; Borri, P. url  doi
openurl 
  Title The optical nanosizer – quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoparticles are widely utilised for a range of applications, from catalysis to medicine, requiring accurate knowledge of their size and shape. Current techniques for particle characterisation are either not very accurate or time consuming and expensive. Here we demonstrate a rapid and quantitative method for particle analysis based on measuring the polarisation-resolved optical extinction cross-section of hundreds of individual nanoparticles using wide-field microscopy, and determining the particle size and shape from the optical properties. We show measurements on three samples consisting of nominally spherical gold nanoparticles of 20 nm and 30 nm diameter, and gold nanorods of 30 nm length and 10 nm diameter. Nanoparticle sizes and shapes in three dimensions are deduced from the measured optical cross-sections at different wavelengths and light polarisation, by solving the inverse problem, using an ellipsoid model of the particle polarisability in the dipole limit. The sensitivity of the method depends on the experimental noise and the choice of wavelengths. We show an uncertainty down to about 1 nm in mean diameter, and 10% in aspect ratio when using two or three color channels, for a noise of about 50 nm<sup>2</sup>in the measured cross-section. The results are in good agreement with transmission electron microscopy, both 2D projection and tomography, of the same sample batches. Owing to its combination of experimental simplicity, ease of access to statistics over many particles, accuracy, and geometrical particle characterisation in 3D, this “optical nanosizer” method has the potential to become the technique of choice for quality control in next-generation particle manufacturing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558928800022 Publication Date 2020-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes This work was supported by a Welsh Government Life Sciences Bridging Fund (grant LSBF/R6-005) and by the UK EPSRC (grant no. EP/I005072/1 and EP/M028313/1). PB acknowledges the Royal Society for her Wolfson research merit award (grant WM140077). The authors acknowledge funding from the European Commission (Grant EUSMI E191000350). WA acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant 797153, SOPMEN), and Sara Bals for supporting the STEM measurements. The bright-field TEM was performed by Thomas Davies at Cardiff University. We acknowledge Attilio Zilli for helpful discussions and contributions in calculating the relative field strengths in the illumination and finite-element simulation of cross-sections shown in the ESI.† We acknowledge Iestyn Pope for technical support of the optical equipment. Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ lucian @c:irua:170485 Serial 6397  
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V. url  doi
openurl 
  Title First-principles exploration of superconductivity in MXenes Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue Pages 17354-17361  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract MXenes are an emerging class of two-dimensional materials, which in their thinnest limit consist of a monolayer of carbon or nitrogen (X) sandwiched between two transition metal (M) layers. We have systematically searched for superconductivity among MXenes for a range of transition metal elements, based on a full first-principles characterization in combination with the Eliashberg formalism. Thus, we identified six superconducting MXenes: three carbides (Mo2C, W2C and Sc2C) and three nitrides (Mo2N, W2N and Ta2N). The highest critical temperature of similar to 16 K is found in Mo2N, for which a successful synthesis method has been established [Urbankowskiet al.,Nanoscale, 2017,9, 17722-17730]. Moreover, W2N presents a novel case of competing superconducting and charge density wave phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000563481700017 Publication Date 2020-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 15 Open Access  
  Notes ; This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the contract number COST-118F187, the Air Force Office of Scientific Research under award number FA9550-19-1-7048, by Research Foundation-Flanders (FWO) and the University of Antwerp (BOF). The collaboration was fostered by COST action NANOCOHYBRI (CA16218). Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. J. B. acknowledges support of a postdoctoral fellowship of the FWO. ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:171988 Serial 6521  
Permanent link to this record
 

 
Author Wu, L.; Kolmeijer, K.E.; Zhang, Y.; An, H.; Arnouts, S.; Bals, S.; Altantzis, T.; Hofmann, J.P.; Costa Figueiredo, M.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO₂ reduction conditions Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 9 Pages 4835-4844  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu-2.5-Ag-1 electrodes) and C-2 products (maximum of 15.7% for dense Cu-1-Ag-1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000628024200011 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 24 Open Access OpenAccess  
  Notes This work is funded by the Strategic UU-TU/e Alliance project ‘Joint Centre for Chemergy Research’ (budget holder B. M. W.). S. B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S. A. and T. A. acknowledge funding from the University of Antwerp Research fund (BOF). We thank Eric Hellebrand (Faculty of Geosciences, Utrecht University) for the assistance in SEM measurements. Dr Ramon Oord (ARC Chemical Building Blocks Consortium, Faculty of Science, Utrecht University) is acknowledged for assisting with the grazing incidence XRD measurements; sygma Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176723 Serial 6737  
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M. url  doi
openurl 
  Title Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 46 Pages 27743-27751  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553911800053 Publication Date 2020-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 11 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172111 Serial 6553  
Permanent link to this record
 

 
Author Bafekry, A.; Shojaei, F.; Obeid, M.M.; Ghergherehchi, M.; Nguyen, C.; Oskouian, M. url  doi
openurl 
  Title Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 53 Pages 31894-31900  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure.Ab initiomolecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 angstrom, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 angstrom, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565206400027 Publication Date 2020-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 8 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172045 Serial 6644  
Permanent link to this record
 

 
Author Bafekry, A.; Shojai, F.; Hoat, D.M.; Shahrokhi, M.; Ghergherehchi, M.; Nguyen, C. url  doi
openurl 
  Title The mechanical, electronic, optical and thermoelectric properties of two-dimensional honeycomb-like of XSb (X = Si, Ge, Sn) monolayers: a first-principles calculations Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 51 Pages 30398-30405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, by using first-principles calculations, we demonstrate a two-dimensional (2D) of XSb (X = Si, Ge, and Sn) monolayers that have a honey-like crystal structure. The structural, mechanical, electronic, thermoelectric efficiency, and optical properties of XSb monolayers are studied.Ab initiomolecular dynamic simulations and phonon dispersion calculations suggests their good thermal and dynamical stabilities. The mechanical properties of XSb monolayers shows that the monolayers are considerably softer than graphene, and their in-plane stiffness decreases from SiSb to SnSb. Our results shows that the single layers of SiSb, GeSb and SnSb are semiconductor with band gap of 1.48, 0.77 and 0.73 eV, respectively. The optical analysis illustrate that the first absorption peaks of the SiSb, GeSb and SnSb monolayers along the in-plane polarization are located in visible range of light which may serve as a promising candidate to design advanced optoelectronic devices. Thermoelectric properties of the XSb monolayers, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated as a function of doping level at temperatures of 300 K and 800 K. Between the studied two-dimensional materials (2DM), SiSb single layer may be the most promising candidate for application in the thermoelectric generators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561344000009 Publication Date 2020-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 2 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172074 Serial 6624  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Surmenev, R.A.; Neyts, E.C. url  doi
openurl 
  Title Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2020 Publication RSC advances Abbreviated Journal  
  Volume 10 Issue 62 Pages 37800-37805  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (W-ad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the W-ad. We show that the difference (W-ad – W-ad(vdW)) is on average more than 1.1 J m(-2) and 0.5 J m(-2) for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000583523300025 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; The authors gratefully acknowledge financial support from the Russian president's grant MK-330.2020.8 and BOF Fellowships for International Joint PhD students funded by University of Antwerp (UAntwerp, project number 32545). The work was carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant and in part using the Turing HPC infrastructure of the CalcUA core facility of the UAntwerp, a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerp, Belgium. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173603 Serial 6499  
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M. pdf  url
doi  openurl
  Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 52 Pages 31261-31270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566579400025 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 1 Open Access OpenAccess  
  Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number EMAT @ emat @c:irua:172059 Serial 6416  
Permanent link to this record
 

 
Author Bafekry, A.; Obeid, M.; Nguyen, C.; Bagheri Tagani, M.; Ghergherehchi, M. url  doi
openurl 
  Title Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt₂HgSe₃): Van der Waals heterostructures with novel optoelectronic and thermoelectric performances Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 26 Pages 13248-13260  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of the layered platinum mineral jacutingaite (Pt2HgSe3), we have studied the optoelectronic, mechanical, and thermoelectric properties of graphene hetero-multilayer on Pt(2)HgSe(3)monolayer (PHS) heterostructures (LG/PHS) by using first-principles calculations. PHS is a topological insulator with a band gap of about 160 meV with fully relativistic calculations; when graphene layers are stacked on PHS, a narrow band gap of similar to 10-15 meV opens. In the presence of gate-voltage and out-of plane strain,i.e.pressure, the electronic properties are modified; the Dirac-cone of graphene can be shifted upwards (downward) to a lower (higher) binding energy. The absorption spectrum shows two peaks, which are located around 216 nm (5.74 eV) and protracted to 490 nm (2.53 eV), indicating that PHS could absorb more visible light. Increasing the number of graphene layers on PHS has a positive impact on the UV-vis light absorption and gives a clear red-shift with enhanced absorption intensity. To investigate the electronic performance of the heterostructure, the electrical conductance and thermopower of a device composed of graphene layers and PHS is examined by a combination of DFT and Green function formalism. The number of graphene layers can significantly tune the thermopower and electrical conductance. This analysis reveals that the heterostructures not only significantly affect the electronic properties, but they can also be used as an efficient way to modulate the optic and thermoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546391600032 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 20 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2017R1A2B2011989) and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2019.05. ; Approved Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:169755 Serial 6529  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Mortazavi, B. url  doi
openurl 
  Title First-principles investigation of electronic, mechanical and thermoelectric properties of graphene-like XBi (X = Si, Ge, Sn) monolayers Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 21 Pages 12471-12478  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Research progress on single layer group III monochalcogenides has been increasing rapidly owing to their interesting physics. Herein, we investigate the dynamically stable single layer forms of XBi (X = Ge, Si or Sn) using density functional theory calculations. Phonon band dispersion calculations and ab initio molecular dynamics simulations reveal the dynamical and thermal stability of the considered monolayers. Raman spectra calculations indicate the existence of 5 Raman active phonon modes, 3 of which are prominent and can be observed in possible Raman measurements. The electronic band structures of the XBi single layers were investigated with and without the effects of spin-orbit coupling (SOC). Our results show that XBi single layers show semiconducting properties with narrow band gap values without SOC. However, only single layer SiBi is an indirect band gap semiconductor, while GeBi and SnBi exhibit metallic behaviors when adding spin-orbit coupling effects. In addition, the calculated linear elastic parameters indicate the soft nature of the predicted monolayers. Moreover, our predictions for the thermoelectric properties of single layer XBi reveal that SiBi is a good thermoelectric material with increasing temperature. Overall, it is proposed that single layer XBi structures can be alternative, stable 2D single layers with varying electronic and thermoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653851100001 Publication Date 2021-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179007 Serial 6992  
Permanent link to this record
 

 
Author Bafekry, A.; Karbasizadeh, S.; Stampfl, C.; Faraji, M.; Hoat, D.M.; Sarsari, I.A.; Feghhi, S.A.H.; Ghergherehchi, M. url  doi
openurl 
  Title Two-dimensional Janus semiconductor BiTeCl and BiTeBr monolayers : a first-principles study on their tunable electronic properties via an electric field and mechanical strain Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 28 Pages 15216-15223  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of highly crystalline ultrathin BiTeCl and BiTeBr layered sheets [Debarati Hajra et al., ACS Nano, 2020, 14, 15626], herein for the first time, we carry out a comprehensive study on the structural and electronic properties of BiTeCl and BiTeBr Janus monolayers using density functional theory (DFT) calculations. Different structural and electronic parameters including the lattice constant, bond lengths, layer thickness in the z-direction, different interatomic angles, work function, charge density difference, cohesive energy and Rashba coefficients are determined to acquire a deep understanding of these monolayers. The calculations show good stability of the studied single layers. BiTeCl and BiTeBr monolayers are semiconductors with electronic bandgaps of 0.83 and 0.80 eV, respectively. The results also show that the semiconductor-metal transformation can be induced by increasing the number of layers. In addition, the engineering of the electronic structure is also studied by applying an electric field, and mechanical uniaxial and biaxial strain. The results show a significant change of the bandgaps and that an indirect-direct band-gap transition can be induced. This study highlights the positive prospect for the application of BiTeCl and BiTeBr layered sheets in novel electronic and energy conversion systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670553900001 Publication Date 2021-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179827 Serial 7042  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Fadlallah, M.M.; Molaei, F.; Hieu, N.N.; Qian, P.; Ghergherehchi, M.; Gogova, D. url  doi
openurl 
  Title Surface modification of titanium carbide MXene monolayers (Ti₂C and Ti₃C₂) via chalcogenide and halogenide atoms Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 28 Pages 15319-15328  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Inspired by the recent successful growth of Ti2C and Ti3C2 monolayers, here, we investigate the structural, electronic, and mechanical properties of functionalized Ti2C and Ti3C2 monolayers by means of density functional theory calculations. The results reveal that monolayers of Ti2C and Ti3C2 are dynamically stable metals. Phonon band dispersion calculations demonstrate that two-surface functionalization of Ti2C and Ti(3)C(2)via chalcogenides (S, Se, and Te), halides (F, Cl, Br, and I), and oxygen atoms results in dynamically stable novel functionalized monolayer materials. Electronic band dispersions and density of states calculations reveal that all functionalized monolayer structures preserve the metallic nature of both Ti2C and Ti3C2 except Ti2C-O-2, which possesses the behavior of an indirect semiconductor via full-surface oxygen passivation. In addition, it is shown that although halide passivated Ti3C2 structures are still metallic, there exist multiple Dirac-like cones around the Fermi energy level, which indicates that semi-metallic behavior can be obtained upon external effects by tuning the energy of the Dirac cones. In addition, the computed linear-elastic parameters prove that functionalization is a powerful tool in tuning the mechanical properties of stiff monolayers of bare Ti2C and Ti3C2. Our study discloses that the electronic and structural properties of Ti2C and Ti3C2 MXene monolayers are suitable for surface modification, which is highly desirable for material property engineering and device integration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672406800001 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179809 Serial 7027  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Ghergherehchi, M.; Sarsari, I.A.; Ziabari, A.A. url  doi
openurl 
  Title Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure : a first-principles study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 34 Pages 18752-18759  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, motivated by the fabrication of an AlSb monolayer, we have focused on the electronic, mechanical and optical properties of AlSb and InSb monolayers with double-layer honeycomb structures, employing the density functional theory approach. The phonon band structure and cohesive energy confirm the stability of the XSb (X = Al and In) monolayers. The mechanical properties reveal that the XSb monolayers have a brittle nature. Using the GGA + SOC (HSE + SOC) functionals, the bandgap of the AlSb monolayer is predicted to be direct, while InSb has a metallic character using both functionals. We find that XSb (X = Al, In) two-dimensional bodies can absorb ultraviolet light. The present findings suggest several applications of AlSb and InSb monolayers in novel optical and electronic usages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000686236800001 Publication Date 2021-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:181712 Serial 7005  
Permanent link to this record
 

 
Author Mallick, S.; Khalsa, G.; Kaaret, J.Z.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Benedek, N.A.; Hayward, M.A. url  doi
openurl 
  Title The influence of the 6s² configuration of Bi³+ on the structures of A ' BiNb₂O₇ (A ' = Rb, Na, Li) layered perovskite oxides Type A1 Journal article
  Year 2021 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 50 Issue 42 Pages 15359-15369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The 'hybrid improper' mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb2O7, LiBiNb2O7 and NaBiNb2O7, which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi3+ cations which are often observed to stabilize acentric crystal structures due to their 6s(2) electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb2O7 and LiBiNb2O7 adopt polar crystal structures (space groups I2cm and B2cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi3+ cations with Nd3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb2O7 (space group P2(1)2(1)2(1)) differs significantly from the centrosymmetric structure of NaNdNb2O7, which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi3+ cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706651100001 Publication Date 2021-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9234 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182584 Serial 6893  
Permanent link to this record
 

 
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Thomassen, G.; Van Passel, S.; Malina, R.; Springael, J.; Lizin, S.; Venditti, R.A.; Yao, Y.; Van Dael, M. pdf  url
doi  openurl
  Title An integrated techno-sustainability assessment (TSA) framework for emerging technologies Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 4 Pages 1700-1715  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract A better understanding of the drivers of the economic, environmental, and social sustainability of emerging (biobased) technologies and products in early development phases can help decision-makers to identify sustainability hurdles and opportunities. Furthermore, it guides additional research and development efforts and investment decisions, that will, ultimately, lead to more sustainable products and technologies entering a market. To this end, this study developed a novel techno-sustainability assessment (TSA) framework with a demonstration on a biobased chemical application. The integrated TSA compares the potential sustainability performance of different (technology) scenarios and helps to make better-informed decisions by evaluating and trading-off sustainability impacts in one holistic framework. The TSA combines methods for comprehensive indicator selection and integration of technological and country-specific data with environmental, economic, and social data. Multi-criteria decision analysis (MCDA) is used to address data uncertainty and to enable scenario comparison if indicators are expressed in different units. A hierarchical, stochastic outranking approach is followed that compares different weighting schemes and preference structures to check for the robustness of the results. The integrated TSA framework is demonstrated on an application for which the sustainability of a production and harvesting plant of microalgae-based food colorants is assessed. For a set of scenarios that vary with regard to the algae feedstock, production technology, and location, the sustainability performance is quantified and compared, and the underlying reasons for this performance are explored.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629630600018 Publication Date 2021-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:175716 Serial 6931  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Monico, L.; Prati, S.; Sciutto, G.; Catelli, E.; Romani, A.; Balbas, D.Q.; Li, Z.; De Meyer, S.; Nuyts, G.; Janssens, K.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Tardillo Suarez, V.I.; Tucoulou, R.; Mazzeo, R. url  doi
openurl 
  Title Development of a multi-method analytical approach based on the combination of synchrotron radiation X-ray micro-analytical techniques and vibrational micro-spectroscopy methods to unveil the causes and mechanism of darkening of “fake-gilded” decorations in a Cimabue painting Type A1 Journal article
  Year 2022 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 37 Issue 1 Pages 114-129  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Redox processes activated by environmental factors have been identified as the main cause of the chromatic alterations of a number of artists' pigments, including the yellow pigment orpiment (As2S3). Although a general comprehension of the mechanisms has been provided through characterization of degradation compounds of As2S3, experimental evidences to prove how other paint components and how different environmental agents influence the formation pathways of specific secondary compounds are still lacking. Thus, it becomes fundamental to develop a methodological strategy which enable achieving a discrimination among the causes affecting the chemical stability of more heterogenous As2S3-based paints and defining the mechanism through which the alteration establishes and evolves, with the ultimate goal of optimizing the preventive conservation measures of unique masterpieces. In this paper, we propose a comprehensive multi-material and multi-method approach based on the combination of synchrotron radiation X-ray micro-analytical techniques (i.e., X-ray diffraction, X-ray fluorescence and X-ray absorption near edge structure spectroscopy at S K-/Ag L-3-/As K-edges) and vibrational micro-spectroscopy methods to unveil the causes and mechanism of darkening of “fake-gilded” decorations in tempera paintings, originally consisting of an unusual mixture of As2S3 and metallic silver (Ag-0). Such degradation process is a not yet understood phenomenon threatening a series of Old Master paintings, including those by the Italian painters Cimabue and Pietro Lorenzetti. The high specificity, sensitivity and lateral resolution of the employed analytical methods allowed providing first-time evidence for the presence of black acanthite (alpha-Ag2S), mimetite [Pb-5(AsO4)(3)Cl] and syngenite [K2Ca(SO4)(2)center dot H2O] as degradation products of the “fake-gilded” decorations in the Maesta by Cimabue (Church of Santa Maria dei Servi, Bologna, Italy). Furthermore, the study of the painting combined with that of tempera paint mock-ups permitted to explore and define the environmental agents and internal factors causing the darkening, by proving that: (i) Ag-0 and moisture are key-factors for triggering the transformation of As2S3 to alpha-Ag2S and As-oxides; (ii) S2--ions arising from the degradation of As2S3 are the main responsible for the formation of alpha-Ag2S; (iii) light exposure strengthens the tendency of the paint components towards alteration. Based on our findings, we finally propose a degradation mechanism of As2S3/Ag-0-based tempera paints.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722353400001 Publication Date 2021-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:184871 Serial 7142  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Ziabari, A.A.; Fadlallah, M.M.; Nguyen, C., V; Ghergherehchi, M.; Feghhi, S.A.H. url  doi
openurl 
  Title A van der Waals heterostructure of MoS₂/MoSi₂N₄ : a first-principles study Type A1 Journal article
  Year 2021 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 45 Issue 18 Pages 8291-8296  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the successful preparation of MoSi2N4 monolayers in the last year [Y.-L. Hong et al., Science, 2020, 369, 670-674], we investigate the structural, electronic and optical properties of the MoS2/MoSi2N4 heterostructure (HTS). The phonon dispersion and the binding energy calculations refer to the stability of the HTS. The heterostructure has an indirect bandgap of 1.26 (1.84) eV using PBE (HSE06) which is smaller than the corresponding value of MoSi2N4 and MoS2 monolayers. We find that the work function of the MoS2/MoSi2N4 HTS is smaller than the corresponding value of its individual monolayers. The heterostructure structure can enhance the absorption of light spectra not only in the ultraviolet region but also in the visible region as compared to MoSi2N4 and MoS2 monolayers. The refractive index behaviour of the HTS can be described as the cumulative effect which is well described in terms of a combination of the individual effects (the refractive index of MoSi2N4 and MoS2 monolayers).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642436200001 Publication Date 2021-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:178300 Serial 6964  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Gogova, D.; Hoat, D.M.; Ghergherehchi, M.; Chuong, N.V.; Feghhi, S.A.H. url  doi
openurl 
  Title Novel two-dimensional ZnO₂, CdO₂ and HgO₂ monolayers: a first-principles-based prediction Type A1 Journal article
  Year 2021 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 45 Issue Pages 9368-9374  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the existence of monolayers with the chemical formula XO2, where X = Zn, Cd, and Hg with hexagonal and tetragonal lattice structures is theoretically predicted by means of first principles calculations. Through cohesive energy calculation and phonon dispersion simulation, it has been proven that the two-dimensional XO2 monolayers proposed are energetically and dynamically stable suggesting their potential experimental realization. Our detailed study demonstrates that these novel newly predicted materials are half-metals and dilute magnetic semiconductors, and they exhibit magnetism in the ground state. The half-metallic character could find many applications in electronic and spintronic devices. Research into the magnetic properties revealed here can enrich theoretical knowledge in this area and provide more potential candidates for XO2 2D-based materials and van der Waals heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000645671700001 Publication Date 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:178245 Serial 7006  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albecht, W.; Pelt, D.M.; Bals, S. pdf  url
doi  openurl
  Title Deep learning-based denoising for improved dose efficiency in EDX tomography of nanoparticles Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue Pages 12242-12249  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The combination of energy-dispersive X-ray spectroscopy (EDX) and electron tomography is a powerful approach to retrieve the 3D elemental distribution in nanomaterials, providing an unprecedented level of information for complex, multi-component systems, such as semiconductor devices, as well as catalytic and plasmonic nanoparticles. Unfortunately, the applicability of EDX tomography is severely limited because of extremely long acquisition times and high electron irradiation doses required to obtain 3D EDX reconstructions with an adequate signal-to-noise ratio. One possibility to address this limitation is intelligent denoising of experimental data using prior expectations about the objects of interest. Herein, this approach is followed using the deep learning methodology, which currently demonstrates state-of-the-art performance for an increasing number of data processing problems. Design choices for the denoising approach and training data are discussed with a focus on nanoparticle-like objects and extremely noisy signals typical for EDX experiments. Quantitative analysis of the proposed method demonstrates its significantly enhanced performance in comparison to classical denoising approaches. This allows for improving the tradeoff between the reconstruction quality, acquisition time and radiation dose for EDX tomography. The proposed method is therefore especially beneficial for the 3D EDX investigation of electron beam-sensitive materials and studies of nanoparticle transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671395800001 Publication Date 2021-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 016.Veni.192.235 ; H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 797153 ; H2020 Research Infrastructures, 731019; realnano; sygmaSB Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:179756 Serial 6799  
Permanent link to this record
 

 
Author Pramanik, G.; Kvakova, K.; Thottappali, M.A.; Rais, D.; Pfleger, J.; Greben, M.; El-Zoka, A.; Bals, S.; Dracinsky, M.; Valenta, J.; Cigler, P. url  doi
openurl 
  Title Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 23 Pages 10462-10467  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Fluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin-orbit coupling, which in turn shortens the fluorescence decay lifetime (tau(PL)). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased tau(PL) upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine. The heavy atom-mediated increase in tau(PL) is in striking contrast with the HAE and referred to as inverse HAE. Femtosecond and nanosecond transient absorption spectroscopy revealed overcompensation of a slight decrease in lifetime of the transition associated with the Au core (ps) by a large increase in the long-lived triplet state lifetime associated with the Au shell, which contributed to the observed inverse HAE. This unique observation of inverse HAE in gold nanoclusters provides the means to enhance the triplet excited state lifetime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657052500001 Publication Date 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge support from GACR project no. 18-12533S. G. P. acknowledges support from EUSMI project no. E180200060; J. P. from the Ministry of Education, Youth and Sports of the Czech Republic – Program INTER-EXCELLENCE (LTAUSA19066). Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:179052 Serial 6843  
Permanent link to this record
 

 
Author Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P. url  doi
openurl 
  Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
  Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 9 Issue 28 Pages 15704-15713  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671839200001 Publication Date 2021-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 18 Open Access OpenAccess  
  Notes Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867  
  Call Number EMAT @ emat @c:irua:179791 Serial 6802  
Permanent link to this record
 

 
Author Pattyn, C.; Maira, N.; Buddhadasa, M.; Vervloessem, E.; Iseni, S.; Roy, N.C.; Remy, A.; Delplancke, M.-P.; De Geyter, N.; Reniers, F. url  doi
openurl 
  Title Disproportionation of nitrogen induced by DC plasma-driven electrolysis in a nitrogen atmosphere Type A1 Journal article
  Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 24 Issue 18 Pages 7100-7112  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen disproportionation i.e. its simultaneous conversion to compounds of higher (NOx) and lower (NH3) oxidation states in a N-2 DC plasma-driven electrolysis process with a plasma cathode is investigated. This type of plasma-liquid interaction exhibits a growing interest for many applications, in particular nitrogen fixation where it represents a green alternative to the Haber-Bosch process. Optical emission spectroscopy, FTIR and electrochemical sensing systems are used to characterize the gas phase physico-chemistry while the liquid phase is analyzed via ionic chromatography and colorimetric assays. Experiments suggest that lowering the discharge current enhances nitrogen reduction and facilitates the transfer of nitrogen compounds to the liquid phase. Large amounts of water vapor appear to impact the gas discharge physico-chemistry and to favor the vibrational excitation of N-2, a key parameter for an energy-efficient nitrogen fixation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000847733600001 Publication Date 2022-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:190655 Serial 7145  
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. url  doi
openurl 
  Title Indentation of graphene nano-bubbles Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue 15 Pages 5876-5883  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000776763000001 Publication Date 2022-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:187924 Serial 7171  
Permanent link to this record
 

 
Author Fatermans, J.; Romolini, G.; Altantzis, T.; Hofkens, J.; Roeffaers, M.B.J.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Structural analysis of metal clusters confined in nanoporous materials is typically performed by X-ray-driven techniques. Although X-ray analysis has proved its strength in the characterization of metal clusters, it provides averaged structural information. Therefore, we here present an alternative workflow for bringing the characterization of confined metal clusters towards the local scale. This workflow is based on the combination of aberration-corrected transmission electron microscopy (TEM), TEM image simulations, and powder X-ray diffraction (XRD) with advanced statistical techniques. In this manner, we were able to characterize the clustering of Pb atoms in Linde Type A (LTA) zeolites with Pb loadings as low as 5 wt%. Moreover, individual Pb clusters could be directly detected. The proposed methodology thus enables a local-scale characterization of confined metal clusters in zeolites. This is important for further elucidation of the connection between the structure and the physicochemical properties of such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000809619900001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess  
  Notes The authors acknowledge the Research Foundation Flanders through project fundings (FWO, G026718N, G050218N, ZW15_09-G0H6316N, and W002221N) and through a PhD scholarship to G.R. (grant 11C6920N), as well as iBOF-21-085 PERSIST. T.A. and S.V.A. acknowledge funding from the University of Antwerp Research fund (BOF). J.H. acknowledges the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as MPI fellow. M.R. acknowledges funding by the KU Leuven Research Fund (C14/19/079). S.B. and S.V.A. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128−REALNANO and No. 770887−PICOMETRICS). The authors thank Dr. D. Chernyshov for the collection of XRD measurements. Approved Most recent IF: 6.7  
  Call Number EMAT @ emat @c:irua:189061 Serial 7076  
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V. url  doi
openurl 
  Title Enhancing superconductivity in MXenes through hydrogenation Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue 27 Pages 9918-9924  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional transition metal carbides and nitrides (MXenes) are an emerging class of atomically-thin superconductors, whose characteristics are highly prone to tailoring by surface functionalization. Here we explore the use of hydrogen adatoms to enhance phonon-mediated superconductivity in MXenes, based on first-principles calculations combined with Eliashberg theory. We first demonstrate the stability of three different structural models of hydrogenated Mo- and W-based MXenes. Particularly high critical temperatures of over 30 K are obtained for hydrogenated Mo2N and W2N. Several mechanisms responsible for the enhanced electron-phonon coupling are uncovered, namely (i) hydrogen-induced changes in the phonon spectrum of the host MXene, (ii) emerging hydrogen-based phonon modes, and (iii) charge transfer from hydrogen to the MXene layer, boosting the density of states at the Fermi level. Finally, we demonstrate that hydrogen adatoms are moreover able to induce superconductivity in MXenes that are not superconducting in pristine form, such as Nb2C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000820350600001 Publication Date 2022-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:189580 Serial 7155  
Permanent link to this record
 

 
Author Smeyers, R.; Milošević, M.V.; Covaci, L. url  doi
openurl 
  Title Strong gate-tunability of flat bands in bilayer graphene due to moiré encapsulation between hBN monolayers Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 9 Pages 4561-4569  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moire pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moire stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moire-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moire mini-band in width against the moire-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10 meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000933052600001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:195249 Serial 7340  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: