toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bogaerts, A. doi  openurl
  Title (down) Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation Type A1 Journal article
  Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 64 Issue 11/12 Pages 1266-1279  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O− ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000272910300016 Publication Date 2009-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.241; 2009 IF: 2.719  
  Call Number UA @ lucian @ c:irua:79271 Serial 869  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A. url  doi
openurl 
  Title (down) Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
  Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules  
  Volume 13 Issue 9 Pages 1371  
  Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071356400001 Publication Date 2023-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This research received no external funding. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958  
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-P.; Wang, Y.-N.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 033301  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the negative ion behavior in a C4F8 inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (1030 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C2F6, CHF3, and C4F8. This behavior is explained by the availability of feedstock C4F8 gas as a source of the negative ions, as well as by the presence of low energy electrons due to vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C4F8 molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C4F8 plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000358429200004 Publication Date 2015-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:126735 Serial 861  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title (down) Effects of adding hydrogen to an argon glow discharge: overview of relevant processes and some qualitative explanations Type A1 Journal article
  Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 15 Issue Pages 441-449  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000086323700021 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 58 Open Access  
  Notes Approved Most recent IF: 3.379; 2000 IF: 3.488  
  Call Number UA @ lucian @ c:irua:28323 Serial 856  
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385494000006 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title (down) Effect of small amounts of hydrogen added to argon glow discharges: hybrid Monte-Carlo-fluid model Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 056402  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid Monte Carlofluid modeling network is developed for an argon-hydrogen mixture, to predict the effect of small amounts of hydrogen added to a dc argon glow discharge. The species considered in the model include the Ar gas atoms, electrons, Ar+ ions and fast Ar atoms, ArH+, H+, H+2 and H+3 ions, and H atoms and H2 molecules, as well as Ar metastable atoms, sputtered Cu atoms, and the corresponding Cu+ ions. Sixty-five reactions between these species are incorporated in the model. The effect of hydrogen on various calculation results is investigated, such as the species densities, the relative role of different production and loss processes for the various species, the cathode sputtering rate and contributions by different bombarding species, and the dissociation degree of H2 and the ionization degree of Ar and Cu. The calculation results are presented and discussed for 1% H2 addition, and comparison is also made with a pure argon discharge and with only 0.1% H2 addition.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000176552500086 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 33 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:40183 Serial 835  
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title (down) Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 2 Pages 024001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424520100001 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 19 Open Access OpenAccess  
  Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813  
Permanent link to this record
 

 
Author Ranjbar, S.; Shahmansouri, M.; Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli Type A1 Journal article
  Year 2020 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 127 Issue Pages 104064  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Antibiotic resistance is one of the world’s most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some re­actions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603362700001 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Ministry of Science and Technology of Iran; Hercules Foundation; Flemish Government; EWI; S. R. acknowledges funding from the Ministry of Science and Tech­nology of Iran. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the universitteit Antwerpen. We also would like to thank Dr. Charlotta Bengtson for her suggestions in writing this paper. Approved Most recent IF: 7.7; 2020 IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:173860 Serial 6437  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 674 Issue Pages 108114  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525439700011 Publication Date 2019-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited Open Access  
  Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372  
Permanent link to this record
 

 
Author Van Alphen, S.; Slaets, J.; Ceulemans, S.; Aghaei, M.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency? Type A1 Journal Article;Plasma-based CO2-CH4 conversion
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 54 Issue Pages 101767  
  Keywords A1 Journal Article;Plasma-based CO2-CH4 conversion; Effect of N2; Plasma chemistry; Computational modelling; Gliding arc plasmatron; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based CO2 and CH4 conversion is gaining increasing interest, and a great portion of research is dedicated to adapting the process to actual industrial conditions. In an industrial context, the process needs to be able to process N2 admixtures, since most industrial gas emissions contain significant amounts of N2, and gas separations are financially costly. In this paper we therefore investigate the effect of N2 on the CO2 and CH4 conversion in a gliding arc plasmatron reactor. The addition of 20 % N2 reduces the energy cost of the conversion process by 21 % compared to a pure CO2/CH4 mixture, from 2.9 down to 2.2 eV/molec (or from 11.5 to 8.7 kJ/L), yielding a CO2 and CH4 (absolute) conversion of 28.6 and 35.9 % and an energy efficiency of 58 %. These results are among the best reported in literature for plasma-based DRM, demonstrating the benefits of N2 present in the mix. Compared to DRM results in different plasma reactor types, a low energy cost was achieved. To understand the underlying mechanisms of N2 addition, we developed a combination of four different computational models, which reveal that the beneficial effect of N2 addition is attributed to (i) a rise in the electron density (increasing the plasma conductivity, and therefore reducing the plasma power needed to sustain the plasma, which reduces the energy cost), as well as (ii) a rise in the gas temperature, which accelerates the CO2 and CH4 conversion reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000715057300005 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova­ tion programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and through long-term structural fund­ing (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:184044 Serial 6827  
Permanent link to this record
 

 
Author Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 7 Issue 7 Pages 489-498  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366826900058 Publication Date 2015-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 106 Open Access  
  Notes The authors acknowledge nancial support from the Fund for Scientic Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 8.668  
  Call Number c:irua:131058 Serial 3986  
Permanent link to this record
 

 
Author Oliveira, M.C.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of lipid oxidation on the channel properties of Cx26 hemichannels : a molecular dynamics study Type A1 Journal article
  Year 2023 Publication Archives of biochemistry and biophysics Abbreviated Journal  
  Volume 746 Issue Pages 109741-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079100300001 Publication Date 2023-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861; 1096-0384 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.165  
  Call Number UA @ admin @ c:irua:200282 Serial 9028  
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z. doi  openurl
  Title (down) Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation Type A1 Journal article
  Year 2005 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 60 Issue 9/10 Pages 1280-1307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000233074100003 Publication Date 2005-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 165 Open Access  
  Notes Approved Most recent IF: 3.241; 2005 IF: 2.332  
  Call Number UA @ lucian @ c:irua:54189 Serial 820  
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M. doi  openurl
  Title (down) Effect of hydrogen on the growth of thin hydrogenated amorphous carbon films from thermal energy radicals Type A1 Journal article
  Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 88 Issue Pages 141922  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000236612000037 Publication Date 2006-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:57642 Serial 817  
Permanent link to this record
 

 
Author Bogaerts, A.; Grozeva, M. pdf  doi
openurl 
  Title (down) Effect of helium/argon gas ratio in a He-Ar-Cu+ IR hollow-cathode discharge laser : modeling study and comparison with experiments Type A1 Journal article
  Year 2003 Publication Applied physics B : lasers and optics Abbreviated Journal Appl Phys B-Lasers O  
  Volume 76 Issue 3 Pages 299-306  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Ar-m* metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He-2(+) ions and He-m* metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1-5% Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000182758000017 Publication Date 2004-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0946-2171;1432-0649; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.696 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.696; 2003 IF: 2.012  
  Call Number UA @ lucian @ c:irua:104125 Serial 812  
Permanent link to this record
 

 
Author Yusupov, M.; Wende, K.; Kupsch, S.; Neyts, E.C.; Reuter, S.; Bogaerts, A. url  doi
openurl 
  Title (down) Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 5761  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report on multi-level atomistic simulations for the interaction of reactive oxygen species (ROS) with the head groups of the phospholipid bilayer, and the subsequent effect of head group and lipid tail oxidation on the structural and dynamic properties of the cell membrane. Our simulations are validated by experiments using a cold atmospheric plasma as external ROS source. We found that plasma treatment leads to a slight initial rise in membrane rigidity, followed by a strong and persistent increase in fluidity, indicating a drop in lipid order. The latter is also revealed by our simulations. This study is important for cancer treatment by therapies producing (extracellular) ROS, such as plasma treatment. These ROS will interact with the cell membrane, first oxidizing the head groups, followed by the lipid tails. A drop in lipid order might allow them to penetrate into the cell interior (e.g., through pores created due to oxidation of the lipid tails) and cause intracellular oxidative damage, eventually leading to cell death. This work in general elucidates the underlying mechanisms of ROS interaction with the cell membrane at the atomic level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405746500072 Publication Date 2017-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access OpenAccess  
  Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant number 1200216 N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. S.R. and S.K. acknowledge funding by the BMBF (FKZ: 03Z2DN12). S.R. acknowledges funding by the Ministry of Education, Science and Culture of the State of Mecklenburg-Vorpommern (AU 15001). The authors thank M. Hammer for the support and discussion in the biophysical studies and J. Van der Paal for the interesting discussions. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:144627 Serial 4630  
Permanent link to this record
 

 
Author Xu, W.; Van Alphen, S.; Galvita, V.V.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of Gas Composition on Temperature and CO2Conversion in a Gliding Arc Plasmatron reactor: Insights for Post‐Plasma Catalysis from Experiments and Computation Type A1 Journal Article
  Year 2024 Publication ChemSusChem Abbreviated Journal ChemSusChem  
  Volume Issue Pages  
  Keywords A1 Journal Article; CO2 conversion · Plasma · Gliding arc plasmatron · Temperature profiles · Computational modelling; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma‐based CO<sub>2</sub>conversion has attracted increasing interest. However, to understand the impact of plasma operation on post‐plasma processes, we studied the effect of adding N<sub>2</sub>, N<sub>2</sub>/CH<sub>4</sub>and N<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O to a CO<sub>2</sub>gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post‐plasma catalysis (PPC). Adding N<sub>2</sub>improves the CO<sub>2</sub>conversion from 4 % to 13 %, and CH<sub>4</sub>addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H<sub>2</sub>O, however, reduces the CO<sub>2</sub>conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post‐plasma, N<sub>2</sub>addition increases the temperature, while the CO<sub>2</sub>/CH<sub>4</sub>ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200297300001 Publication Date 2024-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access  
  Notes We acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692) for financial support. We acknowledge Gilles Van Loon for his help to make the quartz and steel devices for the reactor. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 8.4; 2024 IF: 7.226  
  Call Number PLASMANT @ plasmant @c:irua:205101 Serial 9128  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Privat-Maldonado, A.; Yusupov, M.; Rahnama, S.; Bogaerts, A.; Ejtehadi, M.R. url  doi
openurl 
  Title (down) Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Information And Modeling Abbreviated Journal J Chem Inf Model  
  Volume 62 Issue 1 Pages 129-141  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740019000001 Publication Date 2022-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells. Approved Most recent IF: 5.6  
  Call Number PLASMANT @ plasmant @c:irua:185485 Serial 7050  
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Q.-Z.; Liu, J.; Song, Y.-H.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title (down) Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue 11 Pages 114101  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000309329300094 Publication Date 2012-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100637 Serial 802  
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 755-763  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000359672400007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 63 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:126822 Serial 799  
Permanent link to this record
 

 
Author Chen, Z.; Bleiner, D.; Bogaerts, A. doi  openurl
  Title (down) Effect of ambient pressure on laser ablation and plume expansion dynamics: a numerical simulation Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 99 Issue 6 Pages 063304,1-9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000236464400008 Publication Date 2006-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 42 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:56903 Serial 794  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. doi  openurl
  Title (down) Effect of a mass spectrometer interface on inductively coupled plasma characteristics : a computational study Type A1 Journal article
  Year 2012 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 27 Issue 4 Pages 604-610  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma connected to a mass spectrometer interface (sampling cone) is computationally investigated. Typical plasma characteristics, such as gas flow velocity, plasma temperature and electron density, are calculated in two dimensions (cylindrical symmetry) and compared with and without a mass spectrometer sampling interface. The results obtained from our model compare favorably with experimental data reported in the literature. A dramatic increase in the plasma velocity is reported in the region close to the interface. Furthermore, a cooled metal interface lowers the plasma temperature and electron density on the axial channel very close to the sampling cone but the corresponding values in the off axial regions are increased. Therefore, the effect of the interface strongly depends on the measurement position. It is shown that even a small shift from the actual position of the sampler leads to a considerable change of the results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000301496700005 Publication Date 2012-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.379; 2012 IF: 3.155  
  Call Number UA @ lucian @ c:irua:97386 Serial 791  
Permanent link to this record
 

 
Author Paulussen, S.; Sels, B.; Bogaerts, A.; Paul, J. openurl 
  Title (down) Een tweede leven voor broeikasgassen? Type A2 Journal article
  Year 2008 Publication Het ingenieursblad : maandblad van de Koninklijke Vlaamse Ingenieursvereniging KVIV Abbreviated Journal  
  Volume 77 Issue 3 Pages 16-20  
  Keywords A2 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1235 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82308 Serial 3765  
Permanent link to this record
 

 
Author Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F. url  doi
openurl 
  Title (down) Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 61 Issue Pages 102017  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000798071200005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title (down) Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 2 Pages 196  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460702200090 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166  
Permanent link to this record
 

 
Author van Grieken, R.; Bogaerts, A.; Janssens, K. doi  openurl
  Title (down) Editorial Type Editorial
  Year 2006 Publication Spectrochimica acta: part A: molecular spectroscopy Abbreviated Journal Spectrochim Acta A  
  Volume 64 Issue 5 Pages 1089  
  Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000240093100001 Publication Date 2006-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-1425; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.536 Times cited Open Access  
  Notes Approved Most recent IF: 2.536; 2006 IF: 1.270  
  Call Number UA @ lucian @ c:irua:58915 Serial 788  
Permanent link to this record
 

 
Author Chen, Z.Y.; Bogaerts, A.; Depla, D.; Ignatova, V. doi  openurl
  Title (down) Dynamic Monte Carlo simulation for reactive sputtering of aluminium Type A1 Journal article
  Year 2003 Publication Nuclear instruments and methods in physics research: B Abbreviated Journal Nucl Instrum Meth B  
  Volume 207 Issue Pages 415-423  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000184051300006 Publication Date 2003-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 20 Open Access  
  Notes Approved Most recent IF: 1.109; 2003 IF: 1.041  
  Call Number UA @ lucian @ c:irua:44016 Serial 762  
Permanent link to this record
 

 
Author Trenchev, G.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Dual-vortex plasmatron: A novel plasma source for CO2 conversion Type A1 Journal article
  Year 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 39 Issue Pages 101152  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atmospheric pressure gliding arc (GA) discharges are gaining increasing interest for CO2 conversion and other gas conversion applications, due to their simplicity and high energy efficiency. However, they are characterized by some drawbacks, such as non-uniform gas treatment, limiting the conversion, as well as the development of a hot cathode spot, resulting in severe electrode degradation. In this work, we built a dual-vortex plasmatron, which is a GA plasma reactor with innovative electrode configuration, to solve the above problems. The design aims to improve the CO2 conversion capability of the GA reactor by elongating the arc in two directions, to increase the residence time of the gas inside the arc, and to actively cool the cathode spot by rotation of the arc and gas convection. The measured CO2 conversion and corresponding energy efficiency indeed look very promising. In addition, we developed a fluid dynamics non-thermal plasma model with argon chemistry, to study the arc behavior in the reactor and to explain the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546648400008 Publication Date 2020-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Fund for Scientific Research – Flanders, G.0383.16N 11U53.16N ; Hercules Foundation, the Flemish Government; UAntwerpen; We acknowledge financial support from the Fund for Scientific Research – Flanders (FWO); grant numbers G.0383.16N and 11U53.16N. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We would also like to thank G. Van Loon from the University of Antwerp for building the DVP reactor. Approved Most recent IF: 7.7; 2020 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:167593 Serial 6356  
Permanent link to this record
 

 
Author Wanten, B.; Maerivoet, S.; Vantomme, C.; Slaets, J.; Trenchev, G.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Dry reforming of methane in an atmospheric pressure glow discharge: Confining the plasma to expand the performance Type A1 Journal article
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 56 Issue Pages 101869  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a confined atmospheric pressure glow discharge plasma reactor, with very good performance towards dry reforming of methane, i.e., CO2 and CH4 conversion of 64 % and 94 %, respectively, at an energy cost of 3.5–4 eV/molecule (or 14–16 kJ/L). This excellent performance is among the best reported up to now for all types of plasma reactors in literature, and is due to the confinement of the plasma, which maximizes the fraction of gas passing through the active plasma region. The main product formed is syngas, with H2O and C2H2 as byproducts. We developed a quasi-1D chemical kinetics model, showing good agreement with the experimental results, which provides a thorough insight in the reaction pathways underlying the conversion of CO2 and CH4 and the formation of the different products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740230000002 Publication Date 2021-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Vlaamse regering; European Research Council, 810182 ; Herculesstichting; European Research Council; Horizon 2020 Framework Programme; Universiteit Antwerpen; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Finally, we thank T. Kenis, J. Van den Hoek, and T. Breugelmans from the University of Antwerp, for per­ forming the liquid analysis. Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:185163 Serial 6899  
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 5 Pages 055014  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797660000001 Publication Date 2022-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: