toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title (up) MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 6 Issue 5 Pages 2337-2345  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423981200049 Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 131 Open Access  
  Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945  
Permanent link to this record
 

 
Author Trincavelli, J.; Montoro, S.; van Espen, P.; Van Grieken, R. doi  openurl
  Title (up) M\alpha/L\alpha intensity ratios for Ta, W, Pt, Au, Pb and Bi for electron energies in the 11-40 keV range Type A1 Journal article
  Year 1993 Publication X-ray spectrometry Abbreviated Journal  
  Volume 22 Issue Pages 372-376  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)  
  Abstract Both energy- and wavelength-dispersive systems were used to obtain Malpha/Lalpha intensity ratios for Ta, W, Pt, Au, Pb and Bi at various overvoltages. A table of these ratios corrected for matrix absorption and detector efficiency is presented, in addition to an interpolatory function of Malpha/Lalpha generated ratios vs. overvoltage, for each element. In addition, three different ZAF correction models were used to predict both detected and generated ratios. Finally, experimental Mbeta/Malpha ratios measured at different overvoltages are presented for the six elements considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1993MB01200008 Publication Date 2005-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:6221 Serial 8649  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title (up) N-doped graphene : polarization effects and structural properties Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural and mechanical properties of N-doped graphene (NG) are investigated using reactive force field (ReaxFF) potentials in large-scale molecular dynamics simulations. We found that ripples, which are induced by the dopants, change the roughness of NG, which depends on the number of dopants and their local arrangement. For any doping ratio N/C, the NG becomes ferroelectric with a net dipole moment. The formation energy increases nonlinearly with N/C ratio, while the Young's modulus, tensile strength, and intrinsic strain decrease with the number of dopants. Our results for the structural deformation and the thermoelectricity of the NG sheet are in good agreement with recent experiments and ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376245900002 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134148 Serial 4212  
Permanent link to this record
 

 
Author Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. pdf  url
doi  openurl
  Title (up) N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2 Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 176-177 Issue 176-177 Pages 212-224  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A new, two-step nanocasting method was developed to prepare N-doped ordered mesoporous carbon (NOMC) electrocatalysts for the reduction of O2 to H2O2. Our strategy involves the sequential pyrolysis of two inexpensive and readily available N and C precursors, i.e. aniline and dihydroxynaphthalene (DHN), inside the pores of a SBA-15 hard silica template to obtain N-doped graphitic carbon materials with well-ordered pores and high surface areas (764 and 877 m2g−1). By tuning the ratio of carbon sources to silica template, it was possible to achieve an optimal filling of the pores of the SBA-15 silica and to minimise carbon species outside the pores. These NOMC materials displayed outstanding electrocatalytic activity in the oxygen reduction reaction, achieving a remarkably enhanced kinetic current density compared to state-of-the-art N-doped carbon materials (−16.7 mA cm−2 at −0.35 V vs. Ag/AgCl in a 0.1 M KOH solution as electrolyte). The NOMC electrocatalysts showed high selectivity toward the two-electron reduction of oxygen to hydrogen peroxide and excellent long-term stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000356549200022 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 111 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number c:irua:125370 Serial 2246  
Permanent link to this record
 

 
Author Schryvers, D.; Shi, H.; Martinez, G.T.; Van Aert, S.; Frenzel, J.; Van Humbeeck, J. pdf  doi
openurl 
  Title (up) Nano- and microcrystal investigations of precipitates, interfaces and strain fields in Ni-Ti-Nb by various TEM techniques Type P1 Proceeding
  Year 2013 Publication Materials science forum T2 – 9th European Symposium on Martensitic Transformations (ESOMAT 2012), SEP 09-16, 2012, St Petersburg, RUSSIA Abbreviated Journal  
  Volume 738/739 Issue Pages 65-71  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract In the present contribution several advanced electron microscopy techniques are employed in order to describe chemical and structural features of the nano- and microstructure of a Ni45.5Ti45.5Nb9 alloy. A line-up of Nb-rich nano-precipitates is found in the Ni-Ti-rich austenite of as-cast material. Concentration changes of the matrix after annealing are correlated with changes in the transformation temperatures. The formation of rows and plates of larger Nb-rich precipitates and particles is described. The interaction of a twinned martensite plate with a Nb-rich nano-precipitate is discussed and the substitution of Nb atoms on the Ti-sublattice in the matrix is confirmed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000316089000011 Publication Date 2013-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-9752; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Fwo Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104692 Serial 2247  
Permanent link to this record
 

 
Author Li, W.; Hu, Z.-Y.; Zhang, Z.; Wei, P.; Zhang, J.; Pu, Z.; Zhu, J.; He, D.; Mu, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions Type A1 Journal article
  Year 2019 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 375 Issue 375 Pages 164-170  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Because of high electrocatalytic activity, Pt based metal nanospheres (NSs) have attracted a lot of attention. Hence, multi-particle nano-single crystal coalesced PtCu NSs are designed and successfully synthesized by a cost-effective aqueous solution method. The formed PtCu NS catalyst exhibits a superior hydrogen evolution reaction (HER) electrocatalytic activity with an ultralow onset potential of 18 mV at the current density of 2 mA/cm(2) and high mass activity of 1.08 A/mg(pt) (7.2 times higher than that of commercial Pt/C catalysts). Also, it shows an enhancement of 3.2 and 2.7 times in the mass and specific activities toward oxygen reduction reaction (ORR) compared to that of Pt/C. Moreover, it possesses an excellent catalytic durability for both ORR and HER. Even after 10,000 cycles, its ORR mass activity retains 87% of its initial value. The density functional theory (DFT) calculations demonstrate that by introducing Cu atoms into the Pt lattice, a downshift of the D-band center and favorable hydrogen adsorption free energy of approaching to zero (Delta G) occur, indicating the increased electrocatalytic activity of Pt electrocatalysts. (C) 2019 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486104500017 Publication Date 2019-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 25 Open Access  
  Notes ; Z-Y. Hu thank for the support of “the Fundamental Research Funds for the Central Universities (WUT: 2017111055, 2018111039GX, 2018IVA095)”. S. Mu and J. Zhang acknowledges the support from the National Natural Science Foundation of China (NSFC) through award Nos. 51672204 and 21875221 and the opening funds of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (2019-KF-13), Wuhan University of Technology. ; Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:162903 Serial 5391  
Permanent link to this record
 

 
Author Boullay, P.; Schryvers, D.; Ball, J.M. pdf  doi
openurl 
  Title (up) Nano-structures at martensite macrotwin interfaces in Ni65Al35 Type A1 Journal article
  Year 2003 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 51 Issue 5 Pages 1421-1436  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35 material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular {110} austenite planes, enclose a final angle larger or smaller than 90degrees. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwinvariants are observed. The most reproducible deformations occur in a region of approximately 5-10 nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000181677700018 Publication Date 2003-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 31 Open Access  
  Notes Approved Most recent IF: 5.301; 2003 IF: 3.059  
  Call Number UA @ lucian @ c:irua:48364 Serial 2248  
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title (up) Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 40 Pages 13606-13614  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708550500025 Publication Date 2021-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:181795 Serial 8290  
Permanent link to this record
 

 
Author Johnson, G.; Yang, M.Y.; Liu, C.; Zhou, H.; Zuo, X.; Dickie, D.A.; Wang, S.; Gao, W.; Anaclet, B.; Perras, F.A.; Ma, F.; Zeng, C.; Wang, D.; Bals, S.; Dai, S.; Xu, Z.; Liu, G.; Goddard III, W.A.; Zhang, S. doi  openurl
  Title (up) Nanocluster superstructures assembled via surface ligand switching at high temperature Type A1 Journal article
  Year 2023 Publication Nature synthesis Abbreviated Journal  
  Volume 2 Issue 9 Pages 828-837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superstructures with nanoscale building blocks, when coupled with precise control of the constituent units, open opportunities in rationally designing and manufacturing desired functional materials. Yet, synthetic strategies for the large-scale production of superstructures are scarce. We report a scalable and generalized approach to synthesizing superstructures assembled from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters alongside a detailed description of the self-assembly mechanism. Combining operando small-angle X-ray scattering, ex situ molecular and structural characterizations, and molecular dynamics simulations indicates that a high-temperature ligand-switching mechanism, from oleate to benzoate, governs the formation of the nanocluster assembly. The chemical tuning of surface ligands controls superstructure disassembly and reassembly, and furthermore, enables the synthesis of multicomponent superstructures. This synthetic approach, and the accurate mechanistic understanding, are promising for the preparation of superstructures for use in electronics, plasmonics, magnetics and catalysis. Synthesizing superstructures with precisely controlled nanoscale building blocks is challenging. Here the assembly of superstructures is reported from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters and their multicomponent combinations. A high-temperature ligand-switching mechanism controls the self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001124824000001 Publication Date 2023-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202180 Serial 9060  
Permanent link to this record
 

 
Author Jishkariani, D.; Elbert, K.C.; Wu, Y.; Lee, J.D.; Hermes, M.; Wang, D.; van Blaaderen, A.; Murray, C.B. pdf  doi
openurl 
  Title (up) Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 5 Pages 5712-5719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Substitutional doping is a potentially powerful technique to control the properties of nanocrystal (NC) superlattices (SLs). However, not every NC can be substituted into any lattice, as the NCs have to be close in size and shape, limiting the application of substitutional doping. Here we show that this limitation can be overcome by employing ligands of various size. We show that small NCs with long ligands can be substituted into SLs of big NCs with short ligands. Furthermore, we show that shape differences can also be overcome and that cubes can substitute spheres when both are coated with long ligands. Finally, we use the NC effective ligand size, softness, and effective overall size ratio to explain observed doping behaviors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469886300078 Publication Date 2019-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the University of Pennsylvania's NSF MRSEC under award no. DMR-112090 and the CNRS-UPENN-SOLVAY through the Complex Assemblies of Soft Matter Laboratory (COMPASS). K.C.E. acknowledges support from the NSF Graduate Research Fellowship Program under grant no. DGE-1321851. C.B.M. acknowledges the Richard Perry University Professorship at the University of Pennsylvania. D.W. and A.v.B. acknowledge partial funding from the European Research Council under the European Union's Seventh Framework Programme (FP -2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The authors thank EM square in Utrecht University for the access to the microscopes. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160344 Serial 5256  
Permanent link to this record
 

 
Author Nistor, L.C.; van Landuyt, J.; Ralchenko, V.G.; Obratzova, E.D.; Smolin, A.A. openurl 
  Title (up) Nanocrystalline diamond films: transmission electron microscopy and Raman spectroscopy characterization Type A1 Journal article
  Year 1997 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 6 Issue Pages 159-168  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997WN37300021 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 116 Open Access  
  Notes Approved Most recent IF: 2.561; 1997 IF: 1.758  
  Call Number UA @ lucian @ c:irua:21406 Serial 2249  
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. pdf  doi
openurl 
  Title (up) Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 182 Issue Pages 555-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000319488800075 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 42 Open Access  
  Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ lucian @ c:irua:107346 Serial 2250  
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L. pdf  url
doi  openurl
  Title (up) Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 22 Pages 10198-10211  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538526500035 Publication Date 2020-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 32 Open Access OpenAccess  
  Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170218 Serial 6566  
Permanent link to this record
 

 
Author Meynen, V.; Busuioc, A.M.; Beyers, E.; Cool, P.; Vansant, E.F.; Bilba, N.; Mertens, M.; Lebedev, O.; Van Tendeloo, G. openurl 
  Title (up) Nanodesign of combined micro- and mesoporous materials for specific applications in adsorption and catalysis Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Nova Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:63126 Serial 2251  
Permanent link to this record
 

 
Author Vlasov, I.I.; Barnard, A.S.; Ralchenko, V.G.; Lebedev, O.I.; Kanzyuba, M.V.; Saveliev, A.V.; Konov, V.I.; Goovaerts, E. pdf  doi
openurl 
  Title (up) Nanodiamond photoemitters based on strong narrow-band luminescence from silicon-vacancy defects Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 7 Pages 808-812  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Nanostructured and organic optical and electronic materials (NANOrOPT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263737800012 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 98 Open Access  
  Notes Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:74513 Serial 2253  
Permanent link to this record
 

 
Author Shenderova, O.; Vargas, A.; Turner, S.; Ivanov, D.M.; Ivanov, M.G. doi  openurl
  Title (up) Nanodiamond-based nanolubricants : investigation of friction surfaces Type A1 Journal article
  Year 2014 Publication Tribology transactions Abbreviated Journal Tribol T  
  Volume 57 Issue 6 Pages 1051-1057  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synergistic compositions of detonation nanodiamond (DND) particles with polytetrafluoroethylene and molybdenum dialkyldithiophosphate were used in ring-on-ring, four-ball, and block-on-ring tests as an additive to polyalphaolefins and engine oils. Modest to significant reductions in the friction coefficients, wear, or both were observed. In the wear scars produced in the block-on-ring tests, the friction surfaces were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and profilometry. Significant polishing effects of the friction surfaces in lubricants containing DND were revealed in SEM observations and roughness measurements. The roughness of the scar surfaces produced in the presence of DND additives was about 35% lower than the roughness of the scars observed in pure oil experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Park Ridge, Ill. Editor  
  Language Wos 000345317900009 Publication Date 2014-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-2004;1547-397X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.685 Times cited 23 Open Access  
  Notes Approved Most recent IF: 1.685; 2014 IF: 1.349  
  Call Number UA @ lucian @ c:irua:122161 Serial 2252  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Claeys, P. pdf  doi
openurl 
  Title (up) Nanodiamonds do not provide unique evidence for a Younger Dryas impact Type A1 Journal article
  Year 2011 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 108 Issue 1 Pages 40-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000285915000012 Publication Date 2010-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424;1091-6490; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 32 Open Access  
  Notes Approved Most recent IF: 9.661; 2011 IF: 9.681  
  Call Number UA @ lucian @ c:irua:88733 Serial 2254  
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P. pdf  url
doi  openurl
  Title (up) Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
  Year 2019 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 312 Issue 312 Pages 72-79  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468595500008 Publication Date 2019-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:159573 Serial 5743  
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title (up) Nanoengineered nonuniform strain in graphene using nanopillars Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 4 Pages 041405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars. We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306313900001 Publication Date 2012-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 51 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100765 Serial 2255  
Permanent link to this record
 

 
Author Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A. doi  openurl
  Title (up) Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
  Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 455 Issue Pages 3-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000344239200002 Publication Date 2014-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 1 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319  
  Call Number UA @ lucian @ c:irua:121192 Serial 2256  
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title (up) Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27003-27006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000319617700019 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109859 Serial 2257  
Permanent link to this record
 

 
Author Jacobs, M.; Bodart, F.; Terwagne, G.; Schryvers, D.; Poulet, A. doi  openurl
  Title (up) Nanohardness and structure of nitrogen implanted SixAly coatings post-implanted with oxygen Type A1 Journal article
  Year 1999 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 147 Issue Pages 231-237  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000077846200041 Publication Date 2003-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.109; 1999 IF: 1.118  
  Call Number UA @ lucian @ c:irua:29377 Serial 2258  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title (up) Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages 235421,1-235421,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278710800003 Publication Date 2010-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 108 Open Access  
  Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83093 Serial 2259  
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title (up) NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 191 Issue Pages 108821-10  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001008428600001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:197397 Serial 8903  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W.J. openurl 
  Title (up) Nanoparticle growth and transport mechanisms in capacitively coupled silane discharges: a numerical investigation Type P1 Proceeding
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 201-204  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Melville, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:56576 Serial 2260  
Permanent link to this record
 

 
Author Walters, A.A.; Santacana-Font, G.; Li, J.; Routabi, N.; Qin, Y.; Claes, N.; Bals, S.; Tzu-Wen Wang, J.; Al-Jamal, K.T. pdf  url
doi  openurl
  Title (up) Nanoparticle-MediatedIn SituMolecular Reprogramming of Immune Checkpoint Interactions for Cancer Immunotherapy Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 11 Pages 17549-17564  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Immune checkpoint blockade involves targeting immune

regulatory molecules with antibodies. Preclinically, complex multiantibody

regimes of both inhibitory and stimulatory targets are a promising

candidate for the next generation of immunotherapy. However, in this

setting, the antibody platform may be limited due to excessive toxicity

caused by off target effects as a result of systemic administration. RNA

can be used as an alternate to antibodies as it can both downregulate

immunosuppressive checkpoints (siRNA) or induce expression of

immunostimulatory checkpoints (mRNA). In this study, we demonstrate

that the combination of both siRNA and mRNA in a single

formulation can simultaneously knockdown and induce expression of

immune checkpoint targets, thereby reprogramming the tumor

microenvironment from immunosuppressive to immunostimulatory

phenotype. To achieve this, RNA constructs were synthesized and

formulated into stable nucleic acid lipid nanoparticles (SNALPs); the SNALPs produced were 140−150 nm in size with >80%

loading efficiency. SNALPs could transfect macrophages and B16F10 cells in vitro resulting in 75% knockdown of inhibitory

checkpoint (PDL1) expression and simultaneously express high levels of stimulatory checkpoint (OX40L) with minimal

toxicity. Intratumoral treatment with the proposed formulation resulted in statistically reduced tumor growth, a greater

density of CD4+ and CD8+ infiltrates in the tumor, and immune activation within tumor-draining lymph nodes. These data

suggest that a single RNA-based formulation can successfully reprogram multiple immune checkpoint interactions on a

cellular level. Such a candidate may be able to replace future immune checkpoint therapeutic regimes composed of both

stimulatory- and inhibitory-receptor-targeting antibodies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000747115200039 Publication Date 2021-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access OpenAccess  
  Notes A.A.W. is the grateful recipient of a Maplethorpe Fellowship. K.A.J. acknowledges funding from the British Council (Newton Fund, 337313), Wellcome Trust (WT103913), and the Cancer Research UK King’s Health Partners Centre at King’s College London. Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI). Images were drawn on BioRender.com. Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:183950 Serial 6829  
Permanent link to this record
 

 
Author Frederickx, P.; De Vis, K.; Wouters, H.; Helary, D.; Schryvers, D. openurl 
  Title (up) Nanoparticles in glass and glazes Type P3 Proceeding
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Art; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Italian Society of Non Destructive Testing Monitoring Place of Publication Rome Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:107750 Serial 2261  
Permanent link to this record
 

 
Author Frederickx, P.; Verbeeck, J.; Schryvers, D.; Helary, D.; Darque-Ceretti, E. openurl 
  Title (up) Nanoparticles in lustre reconstructions Type P1 Proceeding
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 169-175  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication s.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:55689 Serial 2262  
Permanent link to this record
 

 
Author Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumee, L.F. pdf  doi
openurl 
  Title (up) Nanoporous Dealloyed Metal Materials Processing and Applications?A Review Type A1 Journal article
  Year 2023 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The development of porous metal materials with pore geometries and sizes at the nanoscale offers promising opportunities for the development of smart responsive interfaces for separation and catalytic applications and as building blocks for complex composite materials. Dealloying is an innovative technique based on selective removal of a sacrificial metal from a metal alloy to engineer surface textures and pores across significant thicknesses. Dealloyed structures may be processed over large scales and for a range of source alloys, offering unprecedented manufacturing opportunities. This review presents the operations and challenges of dealloying routes and discusses avenues for process optimizations and improvements, aiming at the development of scalable nanoporous materials. The potential of dealloyed materials for catalytic and sensing applications is expanded and benchmarked against reference materials. Future prospects and applications of dealloyed materials toward surface reactivity control and pore architecture development are highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918107700001 Publication Date 2023-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.2; 2023 IF: 2.843  
  Call Number UA @ admin @ c:irua:199419 Serial 8904  
Permanent link to this record
 

 
Author Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; König, T.A.F.; Fery, A. pdf  url
doi  openurl
  Title (up) Nanorattles with tailored electric field enhancement Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 9376-9385  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanorattles are metallic core–shell particles with core and shell separated by a dielectric spacer. These

nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high

electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry

owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions

and commensurate variations in enhancement factor. We present a novel synthetic approach for

the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric

nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission

electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering

cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference

time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of

high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy

(STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of

structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic

applications where a defined and robust unit cell is crucial.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405387100015 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 69 Open Access OpenAccess  
  Notes This study was funded by the European Research Council under grant Template-assisted assembly of METAmaterials using MECHanical instabilities (METAMECH) ERC-2012-StG 306686. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). M. T. wants to acknowledge funding by the Elite Network of Bavaria, the Bavarian Ministry of State according to the Bavarian elite promotion act (BayEFG), as well as the Alexander von Humboldt Foundation for a Feodor-Lynen Research Fellowship. S. B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T. A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. We thank Ken Harris from the National Research Council Canada for valuable discussion of the manuscript. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @ c:irua:144797UA @ admin @ c:irua:144797 Serial 4631  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: