|
Record |
Links |
|
Author |
Li, W.; Hu, Z.-Y.; Zhang, Z.; Wei, P.; Zhang, J.; Pu, Z.; Zhu, J.; He, D.; Mu, S.; Van Tendeloo, G. |
|
|
Title |
Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Journal of catalysis |
Abbreviated Journal |
J Catal |
|
|
Volume |
375 |
Issue |
375 |
Pages |
164-170 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Because of high electrocatalytic activity, Pt based metal nanospheres (NSs) have attracted a lot of attention. Hence, multi-particle nano-single crystal coalesced PtCu NSs are designed and successfully synthesized by a cost-effective aqueous solution method. The formed PtCu NS catalyst exhibits a superior hydrogen evolution reaction (HER) electrocatalytic activity with an ultralow onset potential of 18 mV at the current density of 2 mA/cm(2) and high mass activity of 1.08 A/mg(pt) (7.2 times higher than that of commercial Pt/C catalysts). Also, it shows an enhancement of 3.2 and 2.7 times in the mass and specific activities toward oxygen reduction reaction (ORR) compared to that of Pt/C. Moreover, it possesses an excellent catalytic durability for both ORR and HER. Even after 10,000 cycles, its ORR mass activity retains 87% of its initial value. The density functional theory (DFT) calculations demonstrate that by introducing Cu atoms into the Pt lattice, a downshift of the D-band center and favorable hydrogen adsorption free energy of approaching to zero (Delta G) occur, indicating the increased electrocatalytic activity of Pt electrocatalysts. (C) 2019 Elsevier Inc. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000486104500017 |
Publication Date |
2019-06-13 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-9517 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.844 |
Times cited |
25 |
Open Access |
|
|
|
Notes |
; Z-Y. Hu thank for the support of “the Fundamental Research Funds for the Central Universities (WUT: 2017111055, 2018111039GX, 2018IVA095)”. S. Mu and J. Zhang acknowledges the support from the National Natural Science Foundation of China (NSFC) through award Nos. 51672204 and 21875221 and the opening funds of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (2019-KF-13), Wuhan University of Technology. ; |
Approved |
Most recent IF: 6.844 |
|
|
Call Number |
UA @ admin @ c:irua:162903 |
Serial |
5391 |
|
Permanent link to this record |