toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K. pdf  url
doi  openurl
  Title (down) Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 37 Pages 12723-12731  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855284300001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:190602 Serial 7190  
Permanent link to this record
 

 
Author Van Hal, M.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (down) Photocatalytic soot degradation under UV and visible light Type A1 Journal article
  Year 2022 Publication Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Particulate matter is one of the most persistent global air pollutants that is causing health problems, climate disturbance and building deterioration. A sustainable technique that is able to degrade soot using (sun)light is photocatalysis. Currently, research on photocatalytic soot oxidation focusses on large band gap TiO2-based photocatalysts and thus requires the use of UV light. It would prove useful if visible light, and thus a larger fraction of the (freely available) solar spectrum, could additionally be utilised to drive this process. In this work, a visible light-active photocatalyst, WO3, is benchmarked to TiO2 under both UV and visible light. At the same time, the versatility and drastic improvement of a recently introduced digital image-based soot degradation detection method are demonstrated. An additional step correcting for non-soot related catalyst colour changes is applied, resulting in accurate detection and quantification of soot degradation for all studied photocatalysts, even for materials such as WO3 that are inherently coloured. With this study, we aim to broaden the scope of photocatalytic soot oxidation technology to visible light-active photocatalyst. Along with this study, we provide a versatile soot degradation detection methodology based on digital image analysis that is made widely applicable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000871854600010 Publication Date 2022-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.8  
  Call Number UA @ admin @ c:irua:191275 Serial 7189  
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S. pdf  doi
openurl 
  Title (down) Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
  Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 209 Issue Pages 494-500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000311190500058 Publication Date 2012-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473  
  Call Number UA @ lucian @ c:irua:105185 Serial 2609  
Permanent link to this record
 

 
Author Hauchecorne, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. pdf  doi
openurl 
  Title (down) Photocatalytic degradation of ethylene : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 105 Issue 1/2 Pages 111-116  
  Keywords A1 Journal article; Engineering sciences. Technology; Molecular Spectroscopy (MolSpec); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, the reaction mechanism of the photocatalytic oxidation of ethylene is elucidated by means of an in-house developed FTIR in situ reactor. This reactor allowed us to look at the catalytic surface at the moment the reactions actually occur. This new approach gave some exciting new insights in how ethylene is photocatalytically oxidised. It was found that there is a change in dipole moment of the ethylene molecule when it is brought in the neighbourhood of the catalyst. From this finding, a hypothesis was formulated on how the CC-bond from ethylene will break. It was found that the aforementioned interaction between the catalyst and the molecule, allows the excited electrons from the UV irradiated catalyst to occupy the lowest unoccupied molecular orbital (LUMO) of the ethylene molecule through a process known as backdonation. Following this hypothesis, it was found that the degradation occurs through the formation of two intermediates: formaldehyde and formic acid, for which formaldehyde is bound in two different ways (coordinatively and as bidentate). Finally CO2 and H2O are found as end products, resulting in the complete mineralisation of the pollutant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291907400013 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 29 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research; Evonik, who delivered the photocatalyst and the 3rd grade bachelor students of the bio-science engineering department, who accompanied us in this work: Britt Berghmans, Margot Goossens, Ozlem Kocak and Laurent Van Linden. ; Approved Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:89256 Serial 5978  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S. pdf  url
doi  openurl
  Title (down) Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 160 Issue Pages 204-210  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000340687900024 Publication Date 2014-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 37 Open Access OpenAccess  
  Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:117094 Serial 2608  
Permanent link to this record
 

 
Author Meire, M.; Verbruggen, S.W.; Lenaerts, S.; Lommens, P.; Van Der Voort, P.; Van Driessche, I. pdf  url
doi  openurl
  Title (down) Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity Type A1 Journal article
  Year 2016 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 51 Issue 21 Pages 9822-9829  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mesoporous titanium dioxide is a material finding its use in a wide range of applications. For many of these, it is important to achieve a high degree of crystallinity in the material. It is generally accepted that the use of the soft templating approach to synthesize mesoporous titania, results in a compromise between crystallinity and specific surface area due to thermal instability of the used templates. In this paper, we explore how the use of microwave irradiation can influence the crystallinity, specific surface area, and the electronic properties of mesoporous titania. Therefore, we combined microwave radiation with an evaporation-induced self-assembly (EISA) synthesis. We show that additional microwave treatment at carefully chosen synthesis steps can enhance the crystallinity with 20 % without causing significant loss of surface area (>360 m2/g). Surface photovoltage measurements were used to investigate the electronic properties. The photocatalytic activity of the samples was evaluated in aqueous media by following the degradation of an industrial dye, methylene blue, and the herbicide isoproturon under UV irradiation and in gaseous media looking at the degradation of acetaldehyde, a common indoor pollutant under UVA irradiation. In all cases, the microwave treatment results in more active materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381182200023 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 8 Open Access  
  Notes ; M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. We want to thank T. Planckaert for the N<INF>2</INF> sorption measurements, J. Watte for the XRD measurements, and professor K. De Buysser for the quantitative Rietveld refinements. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:140098 Serial 5970  
Permanent link to this record
 

 
Author Billet, J.; Vandewalle, S.; Meire, M.; Blommaerts, N.; Lommens, P.; Verbruggen, S.W.; De Buysser, K.; Du Prez, F.; Van Driesche, I. url  doi
openurl 
  Title (down) Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation Type A1 Journal article
  Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 55 Issue 55 Pages 1933-1945  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Although already some mesoporous (2–50 nm) sol–gel TiO2 synthesis strategies exist, no pore size control beyond the 12 nm range is possible without using specialized organic structure-directing agents synthetized via controlled anionic/radical polymerizations. Here, we present the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a straightforward and industrial applicable alternative to the existing controlled polymerization methods for structure-directing agent synthesis. Poly(N,N-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) block copolymer, synthesized via RAFT, was chosen as structure-directing agent for the formation of the mesoporous TiO2. Crack-free thin layers TiO2 with tunable pores from 8 to 45 nm could be acquired. For the first time, in a detailed and systematic approach, the influence of the block size and dispersity of the block copolymer is experimentally screened for their influence on the final meso-TiO2 layers. As expected, the mesoporous TiO2 pore sizes showed a clear correlation to the polystyrene block size and the dispersity of the PDMA-b-PS block copolymer. Surprisingly, the dispersity of the polymer was shown not to be affecting the standard deviation of the pores. As a consequence, RAFT could be seen as a viable alternative to the aforementioned controlled polymerization reactions for the synthesis of structure-directing agents enabling the formation of mesoporous pore size-controlled TiO2. To examine the photocatalytic activity of the mesoporous TiO2 thin layers, the degradation of acetaldehyde, a known indoor pollutant, was studied. Even after 3 years of aging, the TiO2 thin layer retained most of its activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494929300001 Publication Date 2019-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 2 Open Access  
  Notes ; Ghent University is acknowledged for funding the research presented in this paper. M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. The authors thank Bernhard De Meyer for the SEC analysis, Hannes Rijckaert for the cross-sectional analysis, Tom Planckaert for BET analysis of the meso-TiO<INF>2</INF> powders, Jeroen Kint for the porosiellipsometry tests and Frank Driessen for the MALDI-TOF analysis. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:163842 Serial 5969  
Permanent link to this record
 

 
Author Caretti, I.; Keulemans, M.; Verbruggen, S.W.; Lenaerts, S.; Van Doorslaer, S. pdf  url
doi  openurl
  Title (down) Light-induced processes in plasmonic Gold/TiO2 photocatalysts studied by electron paramagnetic resonance Type A1 Journal article
  Year 2015 Publication Topics in catalysis Abbreviated Journal Top Catal  
  Volume 58 Issue 12 Pages 776-782  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract X-band and W-band continuous-wave (CW) electron paramagnetic resonance (EPR) was used to study in situ light-induced (LI) mechanisms in commercial P90 titania (90 % anatase/10 % rutile) compared to plasmon-enhanced Au-P90 photocatalyst. These materials were excited using UV and 532 nm visible light to generate different excitation states and distinguish pure charge separation from plasmon-assisted resonance processes. Up to nine different photoinduced species of trapped electrons and holes were identified. LI CW EPR of P90 is presented for the first time, showing a UV excitation response similar to the well-known mixed-phase P25 titania. It is shown that incorporation of Au nanoparticles in Au-P90 and formation of a Schottky junction affects the charge separation state of the catalyst under UV light. Moreover, Au impregnation activated P90 through plasmon hot electron injection under visible light excitation (plasmonic sensitization effect). In general, EPR proved to be crucial to determine the different photoexciation paths and reactions that regulate plasmonic photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360011200008 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1022-5528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.486 Times cited 22 Open Access  
  Notes ; IC and SVD acknowledge the Research Foundation-Flanders (FWO) for financial support (Grant G.0687.13). SV thanks FWO for financial support through a postdoctoral fellowship and MK acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (Ph.D. Grant). ; Approved Most recent IF: 2.486; 2015 IF: 2.365  
  Call Number UA @ admin @ c:irua:127413 Serial 5968  
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title (down) Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2624  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000712759800001 Publication Date 2021-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access OpenAccess  
  Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:183281 Serial 6812  
Permanent link to this record
 

 
Author Van Hoecke, L.; Kummamuru, N.B.; Pourfallah, H.; Verbruggen, S.W.; Perreault, P. pdf  url
doi  openurl
  Title (down) Intensified swirling reactor for the dehydrogenation of LOHC Type A1 Journal article
  Year 2023 Publication International journal of hydrogen energy Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract In the recent advances towards more sustainable global energy supply, H2 is a possible alternative for large scale energy storage. In this view, Liquid Organic Hydrogen Carriers (LOHC) are a class of molecules that allow for easier long term energy storage compared to conventional H2 technologies. CFD simulations were used to showcase the hydrodynamics of the dehydrogenation of a LOHC in a new reactor unit, via a cold flow mock-up study. This reactor was designed to allow for a swirling motion of the liquid carrier material, favouring the removal of H2 gas from the flow and forcing the equilibrium of the reaction towards dehydrogenation, as well as to keep the catalyst particles in motion. The CFD simulations were validated qualitatively with experimental operation of the reactor, in a system with identical dimensionless numbers (Reynolds and Stokes), in order to use less costly products during the prototyping phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139598200001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.2 Times cited Open Access Not_Open_Access: Available from 01.03.2024  
  Notes Approved Most recent IF: 7.2; 2023 IF: 3.582  
  Call Number UA @ admin @ c:irua:198534 Serial 8889  
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (down) Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 470 Issue Pages 144390-13  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001030456200001 Publication Date 2023-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:197222 Serial 8882  
Permanent link to this record
 

 
Author Tytgat, T.; Smits, M.; Lenaerts, S.; Verbruggen, S.W. pdf  doi
openurl 
  Title (down) Immobilization of TiO2 into self-supporting photocatalytic foam : influence of calcination temperature Type A1 Journal article
  Year 2014 Publication International journal of applied ceramic technology Abbreviated Journal Int J Appl Ceram Tec  
  Volume 11 Issue 4 Pages 714-722  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of photocatalytic powder is crucial to obtain industrially relevant purification processes. To achieve this goal, self-supporting TiO2 foams were manufactured by a polyacrylamide gel process. These gels were calcined at different temperatures to study the effect of the calcination temperature on foam characteristics (rigidity, crystallinity, and porosity) and its influence on photocatalytic activity. The results show that an optimal degradation is achieved for those foams calcined between 700 and 800°C. Calcination at higher temperatures results in a steep decrease in activity, explained by stability issues of the material due to formation of Na2SO4 phases and a larger rutile fraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339051500012 Publication Date 2013-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1546-542x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.048 Times cited 2 Open Access  
  Notes ; This work was supported by a PhD grant from the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 1.048; 2014 IF: 1.320  
  Call Number UA @ admin @ c:irua:117295 Serial 5960  
Permanent link to this record
 

 
Author Van Hal, M.; Verbruggen, S.W.; Yang, X.-Y.; Lenaerts, S.; Tytgat, T. url  doi
openurl 
  Title (down) Image analysis and in situ FTIR as complementary detection tools for photocatalytic soot oxidation Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 367 Issue 367 Pages 269-277  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution, especially particulate matter (PM), is an increasingly urgent problem in urban environments, causing both short and long-term health problems, climate interference and aesthetical problems due to building fouling. Photocatalysis has been shown to be a possible solution to that end. In this work two complementary detection methods for photocatalytic soot oxidation are studied and their advantages and disadvantages are discussed. First, a colour-based digital image analysis method is drastically improved towards an accurate, detailed and straightforward detection tool, that enables simultaneous measurement of the degradation of different grades of soot fouling (for instance a shallow soot haze versus condensed soot deposits). In the next part, a second soot oxidation detection method is presented based on in situ FTIR spectroscopy. This method has the additional advantage of providing more insight into the photocatalytic soot degradation process by monitoring both gaseous and adsorbed intermediates as well as reaction products while the reactions are ongoing. As an illustration, the proposed detection strategies were applied on four different commercially available and synthesized photocatalytic materials. The digital image analysis showed that P25 (Evonik) is the fastest photocatalytic soot degrader of all studied materials for both a uniform soot haze as well as concentrated soot spots. Application of the in situ method showed that for all studied materials adsorbed formate-related surface species were formed and that commercially available ZnO nanopowder has the highest specificity towards complete mineralization into CO2. With this we aim to provide a set of complementary experimental tools for the convenient, reliable, realistic and standardised detection of photocatalytic soot degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461380400028 Publication Date 2019-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 1 Open Access  
  Notes ; M.V.H. acknowledges the Research Foundation-Flanders (FWO) for a doctoral fellowship. M.V.H., S.W.V., S.L. and X-Y.Y. thank the FWO and the National Natural Science Foundation of China (NSFC) for funding an international collaboration project. Mr. M. Minjauw is greatly thanked for his help in the AFM measurements. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157789 Serial 5958  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title (down) Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 7 Pages 1413-1418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (down) Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (down) Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 316 Issue 316 Pages 850-856  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398985200089 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access OpenAccess  
  Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481  
Permanent link to this record
 

 
Author Chinnabathini, V.C.; Dingenen, F.; Borah, R.; Abbas, I.; van der Tol, J.; Zarkua, Z.; D'Acapito, F.; Nguyen, T.H.T.; Lievens, P.; Grandjean, D.; Verbruggen, S.W.; Janssens, E. doi  openurl
  Title (down) Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 14 Pages 6696-6708  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968631100001 Publication Date 2023-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196040 Serial 7988  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Masschaele, K.; Moortgat, E.; Korany, T.E.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title (down) Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde Type A1 Journal article
  Year 2012 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume 2 Issue 11 Pages 2311-2318  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The photocatalytic activity of two commercial titanium dioxide powders (Cristal Global, Millennium PC500 and Evonik, P25) is compared towards acetaldehyde degradation in the gas phase. In contrast to the extensive literature available, we found a higher activity for the PC500 than for the P25 coating. Here, we present a comprehensive characterization of the bulk and surface properties of both powders. Our comparison shows that the material properties that dominate the overall photocatalytic activity in gas phase differ from those required for the photodegradation of water-borne pollutants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310863900020 Publication Date 2012-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 33 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for the financial support. J.A.M acknowledges long term funding (Methusalem). ; Approved Most recent IF: 5.773; 2012 IF: 3.753  
  Call Number UA @ admin @ c:irua:105162 Serial 5952  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Verbruggen, S.W.; Lenaerts, S.; Perreault, P. pdf  url
doi  openurl
  Title (down) Experimental investigation of methane hydrate formation in the presence of metallic packing Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 323 Issue Pages 124269-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Clathrate hydrates gained significant attention as a viable option for large-scale storage of natural gas, primarily methane (CH4). Unlike employing the nanoconfinement for enhancing the nucleation sites and hydrate growth as in the porous materials, whose synthesis is often associated with high costs and poor batch reproducibility, a new approach for promoting CH4 hydrates using pure water (H2O) in an unstirred reactor packed with stainless steel beads (SSB) was proposed in this fundamental work, where the interstitial space between the beads was exploited for enhanced hydrate growth. SSB of two diameters, 5 mm and 2 mm, were used as. a packed bed to investigate their effects on CH4 hydrate formation at 273.65 K, 275.65 K, and 277.65 K with an initial pressure of 6 MPa. The thermal conductivity of SSB packing potentially aided hydrate growth by expelling the hydration heat, while, the results also revealed that driving force has a substantial impact on the rate of CH4 hydrate formation and gas uptake. The experiments conducted in both 5 mm and 2 mm SSB packed bed reactors showed a maximum gas uptake of 0.147 mol CH4/mol H2O at 273.65 K with water to hydrate conversion of 84.42% with no significant variation. The results established the promotion effect on the kinetics of CH4 hydrate formation in the unstirred reactor packed with 2 mm SSB due to the availability of more interstitial space offering multiple nucleation sites for CH4 hydrate by providing a larger specific surface area for H2O-CH4 reaction. Experiments with varying H2O content were also performed and the results showed that the water to hydrate conversion and rate of hydrate formation could be enhanced at a lower H2O content in a packed bed reactor. This study demonstrates that the use of costly or intricate porous materials can be made redundant, by exploiting the interstitial voids in packing of cheap and widely available SSB as a promising alternative material for enhancing the kinetics of artificial CH4 hydrate synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799165400007 Publication Date 2022-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187830 Serial 7159  
Permanent link to this record
 

 
Author Watson, G.; Kummamuru, N.B.; Verbruggen, S.W.; Perreault, P.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Van Der Voort, P. url  doi
openurl 
  Title (down) Engineering of hollow periodic mesoporous organosilica nanorods for augmented hydrogen clathrate formation Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal  
  Volume 11 Issue 47 Pages 26265-26276  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Hydrogen (H2) storage, in the form of clathrate hydrates, has emerged as an attractive alternative to classical storage methods like compression or liquefaction. Nevertheless, the sluggish enclathration kinetics along with low gas storage capacities in bulk systems is currently impeding the progress of this technology. To this end, unstirred systems coupled with porous materials have been shown to tackle the aforementioned drawbacks. In line with this approach, the present study explores the use of hydrophobic periodic organosilica nanoparticles, later denoted as hollow ring-PMO (HRPMO), for H2 storage as clathrate hydrates under mild operating conditions (5.56 mol% THF, 7 MPa, and 265–273 K). The surface of the HRPMO nanoparticles was carefully decorated/functionalized with THF-like moieties, which are well-known promoter agents in clathrate formation when applied in classical, homogeneous systems. The study showed that, while the non-functionalized HRPMO can facilitate the formation of binary H2-THF clathrates, the incorporation of surface-bound promotor structures enhances this process. More intriguingly, tuning the concentration of these surface-bound promotor agents on the HRPMO led to a notable effect on solid-state H2 storage capacities. An increase of 3% in H2 storage capacity, equivalent to 0.26 wt%, along with a substantial increase of up to 28% in clathrate growth kinetics, was observed when an optimal loading of 0.14 mmol g−1 of promoter agent was integrated into the HRPMO framework. Overall, the findings from this study highlight that such tuning effects in the solid-state have the potential to significantly boost hydrate formation/growth kinetics and H2 storage capacities, thereby opening new avenues for the ongoing development of H2 clathrates in industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108752600001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access  
  Notes Approved Most recent IF: 11.9; 2023 IF: 8.867  
  Call Number UA @ admin @ c:irua:201007 Serial 9031  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (down) Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. url  doi
openurl 
  Title (down) Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 10 Pages 10618-10626  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711236300022 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181953 Serial 7853  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (down) Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages 128521  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, B.; Blust, R.; Lenaerts, S. url  doi
openurl 
  Title (down) Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue Pages 56200-56206  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diatoms are unicellular microalgae that self-assemble an intricate porous silica cell wall, called frustule. Diatom frustules possess a unique combination of physical and chemical properties (chemical inertness, high mechanical strength, large surface area, low density, good porosity and highly ordered features on the nano-to-micro scale) making diatom frustules suited for many nanotechnological applications. For most proposed applications the organic material covering the frustules needs to be removed. In this paper we investigate the effect of different frustule cleaning methods (drying, autoclavation, SDS/EDTA treatment, H2O2 treatment and HNO3 treatment) and subsequent heat treatment at different temperatures (105 °C, 350 °C, 550 °C and 750 °C) on the material characteristics of the diatom Pinnularia sp. Material characteristics under study are morphology, surface area, pore size, elemental composition and organic content. The cleaned Pinnularia frustules are subsequently investigated as adsorbents to remove methylene blue (MB) from aqueous solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344997800060 Publication Date 2014-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ admin @ c:irua:121377 Serial 5945  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Mul, G. pdf  doi
openurl 
  Title (down) Editorial overview : photocatalysis 2022 shining light on a diversity of research opportunities Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 42 Issue Pages 100838-2  
  Keywords Editorial; Engineering sciences. Technology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034184800001 Publication Date 2023-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:197220 Serial 8854  
Permanent link to this record
 

 
Author Van Eynde, E.; Hu, Z.-Y.; Tytgat, T.; Verbruggen, S.W.; Watte, J.; Van Tendeloo, G.; Van Driessche, I.; Blust, R.; Lenaerts, S. doi  openurl
  Title (down) Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources Type A1 Journal article
  Year 2016 Publication Environmental science : nano Abbreviated Journal Environ Sci-Nano  
  Volume 3 Issue 5 Pages 1052-1061  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present a green, biological production route for silica-titania photocatalysts using diatom microalgae. Diatoms are single-celled, eukaryotic microalgae (2-2000 mu m) that self-assemble soluble silicon (Si(OH)(4)) into intricate silica cell walls, called frustules. These diatom frustules are formed under ambient conditions and consist of hydrated silica with specific 3D morphologies and micro-meso or macroporosity. A remarkable characteristic of diatoms is their ability to bioaccumulate soluble titanium from cell culture medium and incorporate them into their nanostructured silica cell wall. Controlled cultivation of the diatom Pinnularia sp. on soluble titanium in a batch process resulted in the biological immobilisation of titanium dioxide in the porous 3D architecture of the frustules. Six different titanium sources are tested. The silica-titania frustules were isolated by treating the harvested Pinnularia cells with nitric acid (65%) or by high temperature treatment. Thermal annealing converted the amorphous titania into crystalline titania. The produced silica-titania material is evaluated towards photocatalytic activity for acetaldehyde (C2H4O) abatement. Frustules cultivated with TiBaldH showed the highest photocatalytic performance. Comparison of the photocatalytic activity with P25 reveals that P25 has a 4 fold higher photocatalytic activity, but when photocatalytic activity is normalized for titania content, the frustules show double activity. Further material characterization (morphology, crystallinity, surface area and elemental distribution) of the TiBaldH silica-titania frustules provides additional insight into their structure-activity relationship. These natural biosilicatitania materials have excellent properties for photocatalytic purposes, including high surface area (108 m(2) g(-1)) and good porosity, and show reliable immobilization of TiO2 in the ordered structure of the diatom frustule.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000385257900011 Publication Date 2016-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-8153; 2051-8161 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.047 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 6.047  
  Call Number UA @ lucian @ c:irua:144751 Serial 4644  
Permanent link to this record
 

 
Author Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K. url  doi
openurl 
  Title (down) Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type A1 Journal article
  Year 2024 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001214481000001 Publication Date 2024-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access  
  Notes Approved Most recent IF: 4; 2024 IF: 4.136  
  Call Number UA @ admin @ c:irua:205962 Serial 9142  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. url  doi
openurl 
  Title (down) Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 50 Pages 30594-30603  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503919500061 Publication Date 2019-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164530 Serial 5938  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Tytgat, T.; Van Passel, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title (down) Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air Type A1 Journal article
  Year 2014 Publication Chemicke zvesti Abbreviated Journal Chem Pap  
  Volume 68 Issue 9 Pages 1273-1278  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336443400015 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-6352 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.258 Times cited 10 Open Access  
  Notes ; S. W. V. wishes to thank the Research Foundation Flanders (FWO) for the financial support received. The authors are grateful to the University of Antwerp for supporting and funding this research. Evonik is sincerely thanked for providing catalyst samples for our experiments free of charge. All companies are thanked for providing specific pricing data. ; Approved Most recent IF: 1.258; 2014 IF: 1.468  
  Call Number UA @ admin @ c:irua:117297 Serial 6174  
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C. doi  openurl
  Title (down) Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
  Year 2014 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 32 Issue 1 Pages 01a123  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335847600023 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 10 Open Access  
  Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322  
  Call Number UA @ admin @ c:irua:117296 Serial 5936  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: